Площадь правильного шестиугольника, вписанного в окружность, равна сумме площадей шести правильных треугольников со сторонами, равными радиусу этой окружности. Тогда площадь одного треугольника равна D/6. По формуле эта площадь равна (√3/4)*a², где а=R. Следовательно, √3*R²/4=D/6 => R²=2D√3/9. R=√(2D√3)/3 По Пифагору квадрат диагонали вписанного квадрата равен (2R)²=2а², где а - сторона квадрата. а=2R/√2 = R√2, а площадь - S= а² =2R² . Подставим найденное значение R, тогда сторона вписанного квадрата: а=√(2D√3/9)*√2=√(4D√3)/3. площадь вписанного квадрата: S=a²= 4D√3/9.
Сме́жные углы́ — это пара углов, которые дополняют друг друга до 180 градусов. Два смежных угла имеют общую вершину и одну общую сторону, две другие (не общие) стороны образуют прямую линию. Для угла 135 градусов смежным является угол в 45. Если один угол назвать У, а другой Х, то получим два уравнения. У+Х=180 (это по определению смежных углов) . Представив, что Х-больший угол, чем У, то получаем второе уравнение. Х-У=90. Решаем сиситему из двух уравнений. Х+У=180 и Х-У=90. Из второго выражаем Х. Х= 90+У. И подставляем в первое. Получаем: 90+У+У=180. Далее: 90+2У=180. Делим все части уравнения на ". Получаем: 45+У=90. Отсюда У=90-45. У=45 (это меньший угол) . Тогда второй больший будет равен 180-45=135
Следовательно, √3*R²/4=D/6 => R²=2D√3/9.
R=√(2D√3)/3
По Пифагору квадрат диагонали вписанного квадрата равен
(2R)²=2а², где а - сторона квадрата.
а=2R/√2 = R√2, а площадь - S= а² =2R² .
Подставим найденное значение R, тогда
сторона вписанного квадрата:
а=√(2D√3/9)*√2=√(4D√3)/3.
площадь вписанного квадрата:
S=a²= 4D√3/9.