ABCDA1B1C1D1 куб. В1М - одна сторона сечения (соедини в и М1), В1С - вторая сторона сечения. Грани AA1D1D и BB1C1C расположены в параллельных плоскостях, следовательно, стороны сечения, которые находятся в этих гранях, будут параллельны, т.е. так же будет проходить через середину канта и вершину. Значит MD - третья сторона сечения. Аналогично, ND - четвертая сторона. MB1ND - искомое сечение. Его стороны соединяют вершины грани с серединой кантов, а у куба все грани квадраты, значит все стороны сечения равны.
А1В1=а, тогда А1М=а/2. Сторона сечения МВ1=√(a^2+(a/2)^2)=√(a^2+a^2/4)=√(5a^2/4)=a√5/2
Периметр Р=a√5/2 * 4=2a√5
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301