Пусть a и b - меньшая и большая соответственно сторона второго треугольника. Исходя их того, что треугольники подобны, то суммы меньшей и большей стороны первого треугольника и меньшей и большей стороны второго треугольника будут относиться как коэффициент подобия. (3 + 8)/(a + b) = k Но по условию a + b = 22, поэтому 11/22 = k k = 1/2. Значит, сходственные стороны первого треугольника относятся к сходственные сторонам второго как 1:2. Тогда стороны второго треугольника равны: 2•3 см = 6 см 2•6 см = 12 см 2•8 см = 16 см.
Угол равный 60градусов будет лежать против стороны равной 5 см, т. к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол) пусть прямоугольник будет АВСД, точка пересечения диагоналей О, тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см. По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см. У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный. По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5 площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
Исходя их того, что треугольники подобны, то суммы меньшей и большей стороны первого треугольника и меньшей и большей стороны второго треугольника будут относиться как коэффициент подобия.
(3 + 8)/(a + b) = k
Но по условию a + b = 22, поэтому
11/22 = k
k = 1/2.
Значит, сходственные стороны первого треугольника относятся к сходственные сторонам второго как 1:2.
Тогда стороны второго треугольника равны:
2•3 см = 6 см
2•6 см = 12 см
2•8 см = 16 см.