Прямую задано уравнением у = 2х-3 возвращено вокруг некоторой точки на 90 ° по часовой стрелке. составить уравнение прямой, образовавшуюся если она проходит через точку
Строим ромб АВСД, где есть диагонали АС и ВД. Допустим, они пересекаются в точке О. Рассмотрим треугольник АОД. Он прямоугольный, так как угол АОД=90 градусов (Диагонали ромба пересекаются под прямым углом, это по свойству ромба). Также диагонали ромба делятся точкой пересечения пополам, это тоже свойство ромба. Получаем, что АО=1/2АС=12. Тогда ДО=1/2ВД=9. Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба. АД^2=12^2+9^2 АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см. Сторона ромба равняется 15 см.
1) Строится прямоугольный треугольник, у которого катет равен заданной высоте, а гипотенуза - заданной медиане. Это типовая задача построения прямоугольного треугольника по катету и гипотенузе (рисуется прямой угол, то есть две взаимно перпендикулярных прямых, от точки пересечения откладывается заданная высота, - найдена вершина "будущего треугольника", в неё ставится циркуль и проводится окружность радиусом, равным медиане, так где эта окружность пересечет вторую сторону прямого угла - там конец медианы и середина "будущей стороны") 2) в вершину этого треугольника, которая является общим концом медианы и высоты (то есть - вершиной треугольника, который надо построить) ставится циркуль и проводится окружность с заданным радиусом (описанной окружности). (Это уже вторая окружность с центром в этой точке :)) 3) через другой конец медианы (то есть - через середину "будущей стороны") проводится прямая параллельно высоте (то есть - перпендикулярно "будущей стороне). Центр описанной окружности лежит на пересечении этой прямой (медиатриссы) с окружностью, построенной в пункте 2) (Потому что центр описанной окружности равноудален от концов "будущей стороны" и находится на заданном расстоянии от вершины) 4) теперь просто рисуется описанная окружность, и катет построенного в пункте 1) треугольника, (то есть кусок "будущей стороны", который заключен между медианой и высотой) продолжается в обе стороны до пересечения с ней. 5) все вершины треугольника найдены, то есть он построен. Примечание. Окружность в 2) и медиатрисса в 3) могут пересекаться в двух точках, и в принципе, тут получается некая неоднозначность. Наличие двух возможных решений - не недостаток :). Я думаю, автор задачи легко рассмотрит варианты, когда есть 1 решение, когда 2, а когда и вообще нет.
Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба.
АД^2=12^2+9^2
АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см.
Сторона ромба равняется 15 см.