ответПусть дан отрезок АС.
Чтобы с линейки и циркуля построить его середину М, нужно:
1) Из А и С как из центров циркулем провести равные окружности радиусом несколько больше половины этого отрезка,( на глаз это определить несложно), чтобы они могли пересечься.
2) Окружности пересекутся по обе стороны от АС. в точках В и Д ( можно обозначить иначе).
Соединить точки пересечения окружностей.
3) ВД пересечет АС в т.М, которая и является серединой данного отрезка АС.
------
Доказательство.
АВ=ВС=СД=ДА=ВК – радиусы равных окружностей =>
АВСД - ромб, АС и ВД его диагонали. Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. =>АМ=МС,
Середина М отрезка АС построена.
Объяснение:
1) Правильная пирамида - это такая пирамида, в основании которой лежит правильный многоугольник, а высота проецируется в центр основания.
2) Правильным называется многоугольник, у которого все стороны и углы одинаковые. Согласно этому определению, ромб не является правильным многоугольником (не соответствует критерию равенства всех углов).
3) Следовательно, в отношении такой пирамиды не применима формула расчета площади боковой поверхности через площадь основания и cos α - угла между апофемой боковой грани и её проекцией на плоскость основания.
вариант 1 задание 3 в=90 a= 80 o=100 c=80
Объяснение:
перепроверьте еще раз чтобы они в сумме давали 360. b=a по свой. они имеют 90 градусов. полу чаеться угол o= 180-(40+40)=100 ,а угол c=360-100-90-90=80