1) В треугольнике АВС АВ=ВС, высоты АА1, ВВ1, СС1 пересекаются в точке О. Найдите ОВ1, если ОС равно 20, АС=24.
2) Высоты AF и CD треугольника АВС пересекаются в точке К. Найдите угол DFK, если угол BAC=48°, угол ВСА=65°. ответ дайте в градусах обязательно сделайте рисунок ко второй задаче
1. Проводим луч b с началом в точке А перпендикулярно прямой ВС.
b∩BC = H.
На луче b по другую сторону от прямой ВС откладываем отрезок НА' = AH.
Точка A' построена.
2. Проводим луч МО. На этом луче за точку О откладываем отрезок ОМ₁= МО. Точка М₁ построена. М₁(- 4 ; 3)
3. Обозначим гипотенузу с, r - радиус вписанной окружности.
Для прямоугольного треугольника справедлива формула:
r = p - c, где р - его полупериметр.
p = r + c = 3 + 12 = 15 см
Вариант 2.
1. Проводим луч АС. На этом луче за точку С откладываем отрезок СА₁= АС. Точка А₁ построена.
2. Проводим луч с началом в точке D, перпендикулярно оси Ох. Пусть он пересечет ос Ох в точке Н. На это луче за точку Н откладываем отрезок HD₁ = DH. Точка D₁ построена. D₁(- 3 ; - 2).
3. Центральный угол в два раза больше вписанного, опирающегося на ту же дугу.
Пусть вписанный ∠АСВ = х, тогда ∠АОВ = 2х.
2x - x = 50
x = 50
∠АСВ = 50°
∠АОВ = 100°