1. Пусть есть две ПРОИЗВОЛЬНЫЕ касающиеся окружности радиусов r и R, и к ним проведена общая внешняя касательная. Если провести радиусы в точки касания и линию центров, то получится прямоугольная трапеция с основаниями r и R и боковой стороной r + R;откуда длину касательной d (между точками касания) легко найти (r + R)^2 = d^2 + (R - r)^2; d = 2√(R*r); 2. В данном случае есть ТРИ пары окружностей радиуса x, r = 4; R = 9; причем сумма длин внешних касательных между первой и второй, первой и третьей равна длине внешней касательной между второй и третьей. d = d1 + d2; 2√(R*x) + 2√(r*x) = 2*√(R*r); x = R*r/(√R + √r)^2 = 9*4/(3 + 2)^2 = 36/25;
ответка
Задайте свой вопрос и получите ответ от профессионального преподавателя. Выберите лучший ответ.
Подготовка к ЕГЭ Подготовка к ОГЭ Подготовка к олимпиаде Геометрия Алгебра Решение задач
Задать вопрос
Все вопросы
Нонна
Математика 5 - 9 классы
13.12.2019 18:05
Дан ромб ABCD, точка O пересечения диагоналей AC и BD, короткая диагональ равна стороне ромба.
1) Угол между векторами BA−→ и BD−→− равен °;
2) угол между векторами CB−→− и DA−→− равен °;
3) угол между векторами AB−→ и CA−→− равен °;
4) угол между векторами AD−→− и DB−→− равен °;
5) угол между векторами OB−→− и OC−→− равен