Проведены касательные окружности AB, BD и DE, точки касания А, С и Е. АB=31,9 см. Определи периметр треугольника АС ОЧЕНЬ С объяснениями, если можно:))
Пусть дана треугольная пирамида SABC. По условию, угол ASB равен 90 градусов, то есть треугольник ASB прямоугольный. Так как пирамида правильная, AS=BS, треугольнык равнобедренный и его углы равны 45,45,90. В таком треугольнике катет SA в sqrt(2) меньше гипотенузы AB, AB=4sqrt(3), тогда SA=2sqrt(6). Пусть SO высота пирамиды, так как пирамида правильная, O - центр пирамиды. Высота AH проходит через O и является также медианой, а значит, делится точкой O в отношении 2:1, считая от вершины. Высота правильного треугольника равна a*sqrt(3)/2, где a - его сторона, в нашем случае AH=6, AO=2/3AH=4. Треугольник SAO прямоугольный, так как SO перпендикулярно (ABC) и перпендикулярно AO. В нем известны гипотенуза SA и катет AO. По теореме Пифагора найдем SO, SO=2sqrt(2)
Обозначим длину прямоугольника A (см), а его ширину - B (см). По условию его периметр равен 544 (см), т.е. 2*(A+B)=544 (см). Также по условию известно, что его стороны пропорциональны числам 5 и 12, то есть длина относится к 12 (большая сторона соотносится с большим числом) также, как и ширина относится к 5, получаем: A/12=B/5. Выразим A=(12*B)/5 и подставим в периметр: 2*((12/5)*B+B)=544→2*((17/5)*B)=544→(17/5)*B=272→B=(272*5)/17=80 (см) - ширина прямоугольника. Тогда длина A=(12*80)/5=192 (см). Диагональ найдем как гипотенузу прямоугольного треугольника по теореме Пифагора: √(192²+80²)=√(36864+6400)=208 (см). ответ: 208 см.
Пусть дана треугольная пирамида SABC. По условию, угол ASB равен 90 градусов, то есть треугольник ASB прямоугольный. Так как пирамида правильная, AS=BS, треугольнык равнобедренный и его углы равны 45,45,90. В таком треугольнике катет SA в sqrt(2) меньше гипотенузы AB, AB=4sqrt(3), тогда SA=2sqrt(6). Пусть SO высота пирамиды, так как пирамида правильная, O - центр пирамиды. Высота AH проходит через O и является также медианой, а значит, делится точкой O в отношении 2:1, считая от вершины. Высота правильного треугольника равна a*sqrt(3)/2, где a - его сторона, в нашем случае AH=6, AO=2/3AH=4. Треугольник SAO прямоугольный, так как SO перпендикулярно (ABC) и перпендикулярно AO. В нем известны гипотенуза SA и катет AO. По теореме Пифагора найдем SO, SO=2sqrt(2)