1) а=8, b=10, с=12. d=? Sполн=? V=?
V=abc=8*10*12=960
S=2(ab+bc+ac)=2(80 + 120 + 96) = 592
d^2 = a^2+b^2+c^2
d^2= 64 + 100 + 144=308
d=2sqrt{77}
2) a= 18,l= 40. L=?, Sполн=?, V=?
L^2 = 40^2 + 9^2 = 1681
L=41
Sполн= 18^2 + 4 * 1/2 * 40 * 9 = 1044
V = 1/3 * H * 18^2 = 1/3 * sqrt{1033} * 324 = 108sqrt{1033}
3) R= 7, L=11.Sос сеч=?, Sпов=?, V=?
Soc=1/2 * 14 * 11=77
Sпов=ПR(R+L)=П*7(7+11)=126П
V=1/3 * П * 49 * 6sqrt{2} = 98sqrt{2}П
4) a=12, b=15. Sпов=?
Sпов=2*П*12*(12+15)=648П
5) alpha =30 градусов, h= 15 см. Sпов=?
S=2ПRh=2П*5sqrt{3}*15=150sqrt{3}П
R=a²/√(4a²-b²), где a - боковая сторона треугольника, b - его основание.
Подставим известные значения: 16=a²/√(4a²-240). Пусть а²=Х.
Возведем обе части уравнения в квадрат:
256=Х²/(4Х-240). Имеем квадратное уравнение: Х²-1024Х+61440=0.
Отсюда Х=512±√(512²-61440)=512±√(512²-61440)=512±448.
Х1=960; Х2=64. Тогда а1=8√15; а2=8.
Но при боковой стороне треугольника равной 8 треугольник получается ТУПОУГОЛЬНЫМ. (По признаку существования треугольника: "если с - большая сторона и если a² + b² < c², то треугольник тупоугольный", а в нашем случае 64+64<240). Значит а=8 нас не удовлетворяет, так как не выдерживается условие, что треугольник ОСТРОУГОЛЬНЫЙ.
Центр описанной окружности треугольника лежит на пересечении серединных перпендикуляров к его сторонам. Тогда расстояние от центра до боковой стороны найдем из прямоугольного треугольника АНО, в котором гипотенуза - радиус описанной окружности, а катет - половина боковой стороны.
OH=√[R²-(a/2)²]=√(256-240)=4.
ответ: расстояние от центра окружности до боковой стороны равно 4.