Попытаемся найти точки их пересечения, решив систему:
(x-2) 2 + (y-3) 2=16
(x-2) 2 + (y-2) 2=4
(x-2) 2=16 - (y-3) 2
(x-2) 2=4 - (y-2) 2,
отсюда 16 - (y-3) 2=4 - (y-2) 2 упростим
16-у2+6 у-9=4-у2+4 у-4 ещё упростим
6 у-4 у=4-4+9-16 ещё упростим
2 у=-7 найдём игрек
у=-3,5 и попробуем найти икс
(x-2) 2=4 - (-3,5-2) 2 упростим
(x-2) 2=4-30,25 упростим
(x-2) 2=-25,75, а квадрат не может быть отрицательным, следовательно, эти две окружности не пересекаются. Центры окружностей - в точках (2;3) и (2;2) соответственно, то есть расстояние между центрами равно единице, а радиусы - 4 и 2, то есть вторая, меньшая, окружность расположена внутри первой.
ответ: малая окружность расположена внутри большой.
1 Укажите номера верных утверждений.3) Касательная к окружности-это прямая имеющая только одну общую точку с окружностью. 2 Укажите номера верных утверждений. 2) Если три угла одного треугольника соответственно равны трем углам другого треугольника, то такие треугольники подобны. 3) Площадь прямоугольного треугольника равна половине произведения его катетов. 3 Укажите номера верных утверждений. 1) Вертикальные углы равны. 4 Укажите номера верных утверждений. 1) Сумма углов треугольника равна 180 градусов. 2) Площадь круга радиуса R равна лR^2. 3) Средняя линия треугольника равна половине одной из его сторон. 5 Укажите номера верных утверждений. 1) Диагонали ромба делят его углы пополам. 2) Площадь трапеции равна произведению суммы ее оснований на высоту. 3) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Попытаемся найти точки их пересечения, решив систему:
(x-2) 2 + (y-3) 2=16
(x-2) 2 + (y-2) 2=4
(x-2) 2=16 - (y-3) 2
(x-2) 2=4 - (y-2) 2,
отсюда 16 - (y-3) 2=4 - (y-2) 2 упростим
16-у2+6 у-9=4-у2+4 у-4 ещё упростим
6 у-4 у=4-4+9-16 ещё упростим
2 у=-7 найдём игрек
у=-3,5 и попробуем найти икс
(x-2) 2=4 - (-3,5-2) 2 упростим
(x-2) 2=4-30,25 упростим
(x-2) 2=-25,75, а квадрат не может быть отрицательным, следовательно, эти две окружности не пересекаются. Центры окружностей - в точках (2;3) и (2;2) соответственно, то есть расстояние между центрами равно единице, а радиусы - 4 и 2, то есть вторая, меньшая, окружность расположена внутри первой.
ответ: малая окружность расположена внутри большой.