Точку из которой проведены наклонные обозначим К. Опусти из неё на плоскость перпендикуляр КС. Точки пересечения наклонных с плоскостью А и В. Получим отрезки наклонных АК, ВК и их проекции на плоскость АС и ВС. Треуольники АКС и ВКС равны как прямоугольные по острому углу и катету (Ф и КС). Тогда их строны АК и ВК равны. Обозначим их Х. Соединим А и В. Угол АСВ по условию равен В. Углы КАС и КВС равны Ф. АС=ВС=Х*cos Ф. По теореме косинусов АВ квадрат=(Х*cos Ф)квадрат +(Х*cos Ф)квадрат -2*Х*cos Ф*Х*cosФ*cosВ. Это в треугольнике АСВ. В треугольнике АКВ аналогично АВ квадрат=Х квадрат+Хквадрат-2*Х*Х* cos K. Приравниваем полученные выражения и получим cos K=1-(cos Ф)квадрат*(1-cos В). Где К искомый угол АКВ между наклонными
Площадь прав тр через радиус вписанной окружности равен 3 корня из 3 на радиус в квадрате, а площадь вписанного круга равна Пи на радиус в квадрате.
Рассмотрим во сколько раз площадь треугольника больше площади круга.![\frac{3 \sqrt[]{3}r^{2}}{\pi r^{2}}=\frac{3 \sqrt[]{3}}{\pi}](/tpl/images/0144/4450/07e0a.png)
Пусть площадь круга х, тогда площадь треугольника (по условию)
с одной стороны и
с другой.
Получим уравнение![x+27\sqrt[]{3}-9\pi=\frac{x3 \sqrt[]{3}}{\pi}](/tpl/images/0144/4450/99a9d.png)
Разрешим относительно х. Приведем к знаменателю Пи и приравняем числители
Вынесем 3 корня из трех - Пи за скобки и получим
площадь круга = 9Пи
Найдем радиус круга
Т к радиус не может быть отрицательным то он равен 3