построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9
Итак,
Для решения нам нужно знать 3 признака подобия треугольников:
1)по двум пропорциональным сторонам и углу между ними
2)по двум углам
3)по трём пропорциональным сторонам
1) ΔCDO~ΔABO
Доказательство:
∠COD=∠AOB(вертикальные углы)
∠DCO=∠OBA(накрест лежащие углы при параллельных прямых а и б)
Выполняется второй признак подобия треуг. по двум углам
Ч.Т.Д
2)ΔFLK~ΔFMN
Доказательство:
∠F-общий
∠FKL=∠FMN(прямые углы)
Выполняется второй признак подобия треуг. по двум углам
Ч.Т.Д
3) ΔMHK~ΔMCD
Доказательство:
M-общий угол
∠MHK=∠MCD(соответственные углы при параллельных прямых)
Выполняется второй признак подобия треуг. по двум углам
Ч.Т.Д