Відповідь:
Пояснення:
Рассмотрим два треугольника СОВ и АОД
Из условия задачи СО=АО=ДО=ВО как радиуси круга и угли /_СОВ=/_АОД как вертикальние
По признакам подобия △, за двумя сторонами и углом между ними треугольник СОВ и АОД подобни и равни, так кск сторони равни. Поетому в треугольниках СОВ и АОД равни соответствующие угли. /_ОАД=/_ОВС, с другой сторони ети угли являются внутренними разносторонними углами прямих СВ, АД и секущей АВ. Так как ети угли равни, то по признаку паралельности СВ||АД.
Равенство углов /_ОАД=/_ОВС можно доказать также и другим : така как треугольники АОД и СОВ равнобедренние, по условию, то угли при основании одинаковие. Так как /_ АОД=/_СОВ, то все угли при основании треугольников - равни.
∢К=∢М=180-60=120°
MK=12*2=24
S ромба=0,5*d1*d2
Обозначим вторую диагональ(NL) через х:
288√3=0,5*24*x
Х=24√3(NL)
По теореме Пифагора найдём сторону ромба:
(12√3)²+12²=432+144=576
√576=24
Мы знаем что все стороны ромба одинаковые, найдём периметр:
Р=24+24+24+24=96мм
р=96÷2=48мм
∢ МКN=120÷2=60
Значит другой угол равен:
180-(60+90)=30°(∢О)
По теореме сторона лежащий против 30° равен половине гипотенузы:
Гипотенуза ОК=12
12÷2=6(катет)
По теореме Пифагора найдём другой катет(r)
144-36=108
r=√108=6√3
Площадь круга:
S=пr²=108п
ответ:р=48мм
r=6√3 мм
S=108п