Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
Медианы делят треугольник на 6 равных по площади (см ссылку на такую задачу). То есть площадь ВМС равна 1/3 площади АВС.
Осталось вычислить площадь АВС. Это можно сделать по формуле Герона, к примеру, а можно так -
против стороны 15 лежит угол С, тогда по теореме косинусов
15^2=13^2+14^2-2*13*14*cos(C); cos(C)=5/13;
Отсюда sin(C)=корень(1-(5/13)^2)=12/13;
И площадь равна SABC = (1/2)*14*13*(12/13) = 14*6 = 84.
SBMC = SABC/3 = 28