М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

в равнобедренном треугольнике АВС BE высота AB=BC найдите BE если AC=16 и AB=10​

👇
Ответ:

6

Объяснение:

1)в равнобедренном треугольнике высота является биссектрисой и медианой, => AE= EC = 16/2 = 8

2) рассмотрим треугольник BEC:

- угол E = 90 градусов, => BEC - прямоугольный =>

по теореме Пифагора:

BE^2 = BC^2 - EC^2 = 10^2 - 8^2 = 100 - 64 = 36 = 6^2

4,7(10 оценок)
Открыть все ответы
Ответ:
Поэзия
Поэзия
15.10.2022

ответ: обратная теорема - теорема, в которой условием является заключение, а заключением – условие данной теоремы. например, теоремы: "если два угла треугольника равны, то их биссектрисы равны" и "если две биссектрисы треугольника равны, то соответствующие им углы равны" — являются обратными друг другу.

обратная теорема, теорема, условием которой служит заключение исходной теоремы, а заключением — условие.

 

например:

 

теорема:

у равнобедренного треугольника углы при основании равны

обратная:

если в треугольнике углы при основании равны, то этот треугольник равнобедренный

 

теорема:

в треугольнике против большей стороны лежит больший угол

обратная:

в треугольнике против большего угла лежит большая сторона

 

теорема:

прямоугольник - параллелограмм, у которого равны диагонали.

обратная:

параллелограмм с равными диагоналями является прямоугольником.

4,4(60 оценок)
Ответ:
vk2931416haker
vk2931416haker
15.10.2022
АВ = Рabcd : 4 = 12 : 4 = 3 см
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см

ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.

Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.

Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3  / (2√(5 - 4cos80°))

BB₁ = 3x = 9  / (2√(5 - 4cos80°)) или
BB_{1} = \frac{9}{2 \sqrt{5 - 4cos 80^{0} } }

Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁  = 9  / (2√(5 - 4cos80°)) ≈ 2,2
4,5(76 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ