М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Стас1326
Стас1326
19.04.2021 17:52 •  Геометрия

В треугольнике авс угол а равен 50 а угол в в 12 раз меньше угла с найдите углы в и с

Только рисунок без ответа !!​

👇
Ответ:
haaahahaha12345
haaahahaha12345
19.04.2021

Дано:

△ABC.

∠A = 50˚

∠B - ? в 12 раз <, чем ∠C.

Найти:

∠B; ∠C.

Пусть x˚ - ∠B, тогда 12x˚ - ∠C.

∠A = 50˚, по условию.

СУММА УГЛОВ ТРЕУГОЛЬНИКА РАВНЯЕТСЯ 180°.

1.Составление математической модели:

x + 12x + 50 = 180

2.Работа с математической моделью:

13x = 130

x = 10

10˚ - ∠B

∠C = 10 * 12 = 120˚

ответ: 120°; 10°.

Рисунок приблизительно такой:


В треугольнике авс угол а равен 50 а угол в в 12 раз меньше угла с найдите углы в и с Только рисунок
4,6(44 оценок)
Открыть все ответы
Ответ:
rachik141516
rachik141516
19.04.2021

Длина окружности вычисляется по формуле:

С = 2πR      или       C = πd

где R - радиус окружности,

d - диаметр окружности.

а) Радиус окружности, описанной около правильного треугольника:

R = a√3/3

C = 2πa√3/3

б) Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, и гипотенуза является диаметром окружности.  Гипотенузу найдем по теореме Пифагора:

с = √(a² + b²)

C = πd = π√(a² + b²)

в) Проведем высоту к основанию равнобедренного треугольника. Она является так же медианой. Из образовавшегося прямоугольного треугольника выразим косинус угла при основании:

cosα = (a/2) / b = a / (2b).

Из основного тригонометрического тождества получим:

sinα = √(1 - cos²α) = √(1 - a²/(4b²)) = \frac{\sqrt{4b^{2}-a^{2}} }{2b}

Радиус окружности, описанной около любого треугольника, равен отношению стороны к удвоенному синусу противолежащего угла:

R = b/(2sinα)

R=b*\frac{2b}{2\sqrt{4b^{2}-a^{2}} } =\frac{b^{2} }{\sqrt{4b^{2}-a^{2}} }

C=\frac{2\pi*b^{2}}{\sqrt{4b^{2}-a^{2}} }

г) Центр окружности, описанной около прямоугольника, лежит в точке пересечения диагоналей. Радиус ее равен половине диагонали.

Из треугольника, образованного меньшей стороной и двумя половинами диагоналей по теореме косинусов:

a² = R² + R² - 2R·R·cosα = R²(2 - 2cosα)

R² = a² / (2 - 2cosα)

R = a / √(2 - 2cosα)

C = 2πa / √(2 - 2cosα)

д) Правильный шестиугольник делится диагоналями, проведенными через центр, на шесть равных равносторонних треугольников. Тогда площадь одного треугольника:

S = 24√3 / 6 = 4√3 см²

S = a²√3 / 4, где а - сторона треугольника.

a = √(4S / √3) = √(4 · 4√3 / √3) = 4 см

Сторона шестиугольника равна радиусу описанной окружности, тогда

R = a = 4 см

С = 2π · 4 = 8π см

4,5(80 оценок)
Ответ:
Sunlight11
Sunlight11
19.04.2021

Длина окружности вычисляется по формуле:

С = 2πR      или       C = πd

где R - радиус окружности,

d - диаметр окружности.

а) Радиус окружности, описанной около правильного треугольника:

R = a√3/3

C = 2πa√3/3

б) Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, и гипотенуза является диаметром окружности.  Гипотенузу найдем по теореме Пифагора:

с = √(a² + b²)

C = πd = π√(a² + b²)

в) Проведем высоту к основанию равнобедренного треугольника. Она является так же медианой. Из образовавшегося прямоугольного треугольника выразим косинус угла при основании:

cosα = (a/2) / b = a / (2b).

Из основного тригонометрического тождества получим:

sinα = √(1 - cos²α) = √(1 - a²/(4b²)) = \frac{\sqrt{4b^{2}-a^{2}} }{2b}

Радиус окружности, описанной около любого треугольника, равен отношению стороны к удвоенному синусу противолежащего угла:

R = b/(2sinα)

R=b*\frac{2b}{2\sqrt{4b^{2}-a^{2}} } =\frac{b^{2} }{\sqrt{4b^{2}-a^{2}} }

C=\frac{2\pi*b^{2}}{\sqrt{4b^{2}-a^{2}} }

г) Центр окружности, описанной около прямоугольника, лежит в точке пересечения диагоналей. Радиус ее равен половине диагонали.

Из треугольника, образованного меньшей стороной и двумя половинами диагоналей по теореме косинусов:

a² = R² + R² - 2R·R·cosα = R²(2 - 2cosα)

R² = a² / (2 - 2cosα)

R = a / √(2 - 2cosα)

C = 2πa / √(2 - 2cosα)

д) Правильный шестиугольник делится диагоналями, проведенными через центр, на шесть равных равносторонних треугольников. Тогда площадь одного треугольника:

S = 24√3 / 6 = 4√3 см²

S = a²√3 / 4, где а - сторона треугольника.

a = √(4S / √3) = √(4 · 4√3 / √3) = 4 см

Сторона шестиугольника равна радиусу описанной окружности, тогда

R = a = 4 см

С = 2π · 4 = 8π см

4,5(67 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ