Полная поверхность правильной четырехугольной пирамиды равна 357 см^2, а площадь ее основании - 49 дм^2. Найдите: 1) сторону основания 2)апофему 3)боковое ребро пирамиды. Полное объяснение задачи не обязательно,главное решение.
Пирамида правильная, значит треугольник АВС - правильный (равносторонний), а вершина S проецируется в центр О треугольника АВС. AS - боковое ребро =13. SH - апофема = 10. АН - половина стороны (так как в правильной пирамиде боковые грани - равнобедренные треугольники), по Пифагору равна √(AS²-SH²) или АН=√(169-100)=√69. АВ=2√69. АВС - правильный треугольник, в котором СН - высота, медиана и биссектриса. СН=(√3/2)*АВ (формула). СН=(√3/2)*2√69=3√23. НО=(1/3)*СН (свойство медианы) или НО=√23. Из прямоугольного треугольника SOH по Пифагору: SO=√(SH²-HO²) или SO=√(100-23) =√77. ответ: SO=√77.
Остроугольный треугольник — это треугольник, все углы которого острые (то есть градусная мера каждого угла меньше 90º).
Прямоугольный треугольник — это треугольник, у которого один угол прямой (то есть имеет градусную меру
Тупоугольный треугольник — это треугольник, у которого один угол — тупой (то есть имеет градусную меру больше 90º).
Виды треугольников по сторонам:
равносторонние
равнобедренные
разносторонние
Равносторонний треугольник (или правильный треугольник) — это треугольник, у которого все три стороны равны.
Равнобедренный треугольник — это треугольник, у которого две стороны равны
Разносторонний треугольник — треугольник, все стороны которого имеют разную длину.
Если в задаче ничего не сказано о виде треугольника, его считают произвольным, то есть разносторонним.
Отрезки равной длины на чертеже отмечают равным количеством черточек:
разносторонний треугольник
равносторонний треугольник
равнобедренный треугольник