М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kasyanenkoolesy
kasyanenkoolesy
09.02.2021 16:33 •  Геометрия

Найдите площадь круга диаметра радиуса 2 см.
А) πсм²; Б) 2 πсм²; В) 3 πсм²; Г) 4 πсм².​

👇
Ответ:
Nastya250420021
Nastya250420021
09.02.2021

ответ Б)

Объяснение:

это точно правильно

4,7(38 оценок)
Открыть все ответы
Ответ:
zhenya214
zhenya214
09.02.2021

Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть

c2 = a2 + b2,

где c — гипотенуза треугольника.

Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:

a = c cos β = c sin α = b tg α = b ctg β,

где c — гипотенуза треугольника.

Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:

h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.

Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула

a2 = b2 + c2 – 2bc cos α.

Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри тре­угольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).

Теорема 6 (теорема синусов). Для произвольного треугольника (рис. 4) справедливы соотношения

Теорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).

Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.

Теорема 8 (формулы для вычисления площади треугольника).

4

Последняя формула называется формулой Герона.

Теорема 9 (теорема о биссектрисе внутреннего угла).

Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть

b : c = x : y.

Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)

.

Теорема 11 (формула для вычисления длины биссектрисы).

Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).

Теорема 13 (формула для вычисления длины медианы).

Доказательства некоторых теорем

Доказательство теоремы 10. Построим треугольник ABC и проведем в нем биссектрису AD (рис. 8). Пусть CD = x и DB = y. Применим к треугольникам ABD и ACD теорему косинусов:

4,6(2 оценок)
Ответ:
liudmilka19091982
liudmilka19091982
09.02.2021

Решение

Высота есть среднее пропорциональное между проекциями катетов на гипотенузу, поэтому она равна СМ=√(АМ*МВ)=√(5.4*9.6)=√51.84=7.2/см/,

Зная высоту и проекцию, можно найти катеты, СВ=√(СМ²+МВ²)=√(7.2²+5.4²)=√(51.84+29.16)=√81=9/см/.

АС=√(СМ²+АМ²)=√(7.2²+9.6²)=√(51.84+92.16)=√144=12/см/, зная катеты, найдем гипотенузу. АВ=√(АС²+СВ²)=√(12²+9²)=√(144+81)=√225=15/см/

Зная катет и противолежащий угол, можно найти синус этого угла.

например угла А

sin∠A=СВ/АВ=9/15=3/5=0.6

ответ СМ=7.2 см

АС=12см

СВ=9 см

sin∠A=0.6

Дано, рисунок во вложении


В прямоугольном треугольнике проекции катетов на гипотенузу равны 5,4 см и 9,6 см. Определить катеты
4,6(78 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ