Геоме́трия (от др.-греч. γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения[1].
Женщина обучает детей геометрии. Иллюстрация из парижской рукописи «Начал» Евклида, начало XIV века.
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий.
Классификация геометрии, предложенная Клейном в «Эрлангенской программе» в 1872 году и содержащая в своей основе инвариантность геометрических объектов относительно различных групп преобразований, сохраняется до сих пор
Объяснение:
И всё
5x² - 4y² + 30x + 8y + 21 = 0.
Выделяем полные квадраты:
5(х + 3)² - 4(у² - 1)² = 20.
Делим обе части уравнения на 20 и получаем каноническое уравнение гиперболы:
((х + 3)²/(2²)) - ((у² - 1)²/(√5)²) = 1.
Данное уравнение определяет гиперболу с центром в точке:
C(-3; 1) и полуосями: а = 2 и b = √5.
Найдем координаты ее фокусов: F1(-c;0) и F2(c;0), где c - половина расстояния между фокусами
Определим параметр c: c² = a² + b² = 4 + 5 = 9.
c = 3.
Тогда эксцентриситет будет равен: ε = с/а = 3/2.
Асимптотами гиперболы будут прямые:
у - 1 = (√5/2)(х + 3) и у - 1 = -(√5/2)(х + 3).
Директрисами гиперболы будут прямые:
х + 3 = а/ε ,
х + 3 = +-(2/(3/2)).
х + 3 = +-(4/3).
График и таблица координат точек для его построения приведены в приложении.