Даны координаты трёх точек А, В и С. Требуется:
1)записать векторы и АС в координатной форме (в системе орт);
2)найти модули векторов , и АС ;
3)найти угол между векторами АВ и АС ;
4) длину медианы АЕ;
5) уравнение прямой АЕ.
6) записать уравнение сферы, для которой АЕ есть диаметр.
А(-3; 2; 1), В(0; 4; 7), С(6; -10; 9)
S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны.
В нашем случае р=14:2=7, тогда S=√(7*1*2*4) = 2√14.
S=(1/2)*h*AD, отсюда высота треугольника АСD равна
h=2S/AD=(2√14)/3.
Тогда катет HD по Пифагору равен HD=√(CD²-h²)=√(9-56/9)=5/3.
Следовательно, отрезок АН=6-5/3=(18-5)/3=13/3.
По свойству высоты, опущенной из тупого угла на большее основание равнобокой трапеции, отрезок АН равен полусумме оснований трапеции. Тогда ее площадь равна
S=АН*h=(13/3)*(2√14)/3=26√14/9 ≈ 12,1.
ответ: S=26√14/9 ≈ 12,1.