Площадь полной поверхности призмы - это сумма площадей двух оснований (ромбов) и четырех боковых граней (прямоугольников со сторонами, равными высоте и стороне основания призмы). В ромбе диагонали взаимно перпендикулярны и делятся точкой пересечения пополам. => Сторона основания (ромба) по Пифагору равна
а = √((D/2)²+(d/2)²) или а = √(4²+3²) = 5см.
Площадь боковой грани равна Sг= 5*10 = 50см²
Площадь основания равна (1/2)*D*d = 6*8/2=24см².
Площадь полной поверхности призмы равна S=2*24+4*50 = 248 см²
ответ: S=248 см²
ответ: на первое задание
Дано:
AO=OD
A=D
ДОКАЗАТЕЛЬСТВО:
так как уголAOB вертекален с углом COD угол О и там и там равен следовательно углы AOB И COD равны по теореме по 2м углам и прилижащей им стороне
Ч Т Д
ответ: на второе задание
ДОКАЗАТЕЛЬСТВО :
АБ=БЦ И АД=БЦ следовательно углы Д, Б равны друг другу 2. Следовательно треугольники АДЦ, АБЦ равны по теореме 2 стороны и угол между ними
Ч Т Д
ответ :на 3 задание
ДОКАЗАТЕЛЬСТВО :
ОБ это радиус окружности следовательно оба треугольника равнобедренные 2. Следовательно угол Б и там и там равен значит треугольники одинаковые по теореме 2 стороны и угол между ними
Ч Т Д
ОТВЕТ:на 4
ДОКАЗАТЕЛЬСТВО :
Рассмотрим треугольник МБО И ЦОН они вертикальные следовательно угол О и там и там равен 2. Следовательно треугольники МБО И ЦОН равны по теореме 2м углам и прилигающец к ним стороне 3. Следовательно треугольник БОЦ равнобедренный
Ч Т Д
ответ:на 5
ДОКАЗАТЕЛЬСТВО :
Так как треугольники ЦБА = ДАБ следовательно всех их стороны равны друг другу, следовательно ДБ = АС
Ч Т Д