1)нет
2)да
3)нет
4)бессектриса
5)равнобедренный
6)хз
7)Окружность называется вписанной в треугольник, если она касается через все его сторон.
Теорема.
Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
Доказательство.
Пусть ABC данный, O – центр вписанной в него окружности, D, E и F – точки касания окружности со сторонами. Δ AEO = Δ AOD по гипотенузе и катету (EO = OD – как радиус, AO – общая). Из равенства треугольников следует, что ∠ OAD = ∠ OAE. Значит AO биссектриса угла EAD. Точно также доказывается, что точка O лежит на двух других биссектрисах треугольника. Теорема доказана.
7) хз
cb=77.5
ac= 102.5
Объяснение:
ac = cb + 25
ac = 180 - cb
180 - cb = cb + 25
180 - 25 = 2cb
cb=77.5
ac= 102.5