Вся совокупность неровностей земной коры (рельеф)Часть земной поверхности, высоко приподнятая над равниной и сильно расчлененная (горы)Обширные участки с ровной или холмистой поверхностью (равнины)Каменная оболочка Земли, которую образуют земная кора и верхняя часть мантии (литосфера)Равнина, имеющая высоту от 0-200 метров (низменности)Древний, относительно устойчивый участок земной коры, в основании которого лежит древний кристаллический фундамент, покрытый сверху осадочным чехлом (платформа)Равнина, имеющая абсолютную высоту от 500 метров и выше (плоскогорье)Подвижные неустойчивые участки земной коры (складчатость)Равнина, имеющая абсолютную высоту от 200-500 метров (возвышенность)Наука о движение литосферных плит (тектоника)
Ромб ABCD, окружность проходит через точки A, B, C
AK = 5 см; КС = 1, 4 см ⇒ АС = АК + КС = 5 + 1,4 = 6,4 см
У ромба диагонали перпендикулярны и точкой пересечения делятся пополам : AC⊥BD; AO=OC = AC/2 = 6,4 /2 = 3,2 см; BO=OD.
AK⊥BD и делит хорду BD пополам ⇒ AK - диаметр окружности.
ΔABK - прямоугольный, так как сторона AK является диаметром описанной окружности.
Высота треугольника, проведенная из прямого угла на гипотенузу, есть среднее геометрическое проекций катетов на гипотенузу :
BO² = AO·OK = AO·(AK-AO) = 3,2·(5-3,2) = 3,2·1,8 = 5,76 = 2,4²
BO = 2,4 см
ΔAOB образован диагоналями, прямоугольный. Теорема Пифагора
AB² = AO² + BO² = 3,2²+2,4² = 10,24+5,76= 16 = 4²
AB = 4 см
ответ: сторона ромба равна 4 см