Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
х+х+6+х+2*6+х+3*6=160
4х+36=160
4х=160-36
4х=124
х=124/4=31 мм
ответ первая сторона 31мм, вторая 31+6=37мм, третья 31+2*6=43мм, четвертая 31+3*6=49мм.
2) на 8мм :
х+х+8+х+8*2+х+8*3=160
4х+48=160
4х=160-48
4х=112
х=112/4=28мм
Первая сторона 278мм, вторая 28+8=36мм, третья 28+2*8=44мм, четвертая 28+3*8=52мм
3) на 10мм:
х+х+10+х+2*10+х+3*10=160
4х+60=160
4х=160-100
4х=60
х=60/4=15мм
первая 15мм, вторая 15+10=25мм, третья 15+2*10=35мм, четвертая 15+3*10=45мм