искомое сечение - симметричный четырехугольник BPKL
диагонали PL , BK пересекаются под углом 90 град
по условию
стороны основания AB=BC=CD=AD =3
боковые ребра MA=MB=MC=MD =8
точка К - середина ребра MD ; KD = MD /2 = 8/2=4
ABCD -квадрат
диагональ AC = BD = 3√2
пересечение диагоналей точка F : BF =FD = BD/2 =3√2 /2 =1.5√2
BK - медиана треугольника MBD
длина медианы BK = 1/2 √(2 BM^2 +2 BD^2 - MD^2 ) =1/2 √(2*8^2 +2*(3√2)^2 - 8^2 ) =5
по теореме косинусов
cos KBD = ( KD^2 - (BK^2+BD^2) )/ (-2*BK*BD)= ( 4^2 - (5^2+(3√2)^2) )/ (-2*5*3√2)= 9/(10√2)
MF - высота
треугольник EBF - прямоугольный
BE = BF / cos KBD = 1.5√2 / [ 9/(10√2)] = 10/3
по теореме Пифагора EF =√(BE^2 - BF^2) =√( (10/3)^2 - (1.5√2)^2) =√238/6
MF - высота
треугольник MFB - прямоугольный
по теореме Пифагора MF =√( MB^2 -BF^2) =√( 8^2- (1.5√2)^2 ) =√238/2
ME =MF -EF =√238/2- √238/6= √238/3
треугольники MPL ~ MCA подобные
PL / AC = ME /MF ; PL = AC * ME /MF = 3√2 * √238/3 /√238/2 =2√2
площадь сечения(четырехугольника BPKL)
Sс = PL*BK *sin<BEP /2 = 2√2*5*sin90 /2 = 5√2
ответ 5√2
На самом деле плоскость проходит не через С, а через B и N. На рисунке она правильно изображена. Плоскость АМС сечение пересекает по прямой, параллельной АС. Отсюда сразу следует, что (если обозначить К точку пересечения МА и сечения), что поскольку KN II AC, АК/КС = CN/NM = 1/2;
Поэтому, во первых, KN = АC*2/3) (из подобия треугольников АМС и MKN), и - во вторых, (если обозначить Р - точку пересечения высоты пирамиды МО и сечения) МР/РО = 2/1, то есть Р - точка пересечения медиан треугольника MBD. То есть прямая ВР, лежащая в плоскости сечения - это медиана треугольника MBD. То есть сечение делит MD пополам (надо еще обозначить Q - середина MD).
Легко видеть, что KN перпендикулярно плоскости MBD (обоснование! - самостоятельно), то есть KN перпендикулярно BQ. Таким образом, в четырехугольнике BKQN, который получается в сечении, диагонали KN и BQ взаимно перпендикулярны.
Площадь BKQN равна половине произведения диагоналей, S = KN*BQ/2; KN = 2√2/3; осталось найти BQ.
BQ - медиана в равнобедренном треугольнике BMD со сторонами BM = MD =2; BD = √2;
(2*BQ)^2 = 2*(BD)^2 + MD^2 = 8; BQ = √2; (занятно, что треугольник BQD подобен треугольнику MBD);
S = √2*(2√2/3)/2 = 2/3.