М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nurbolatborec7
nurbolatborec7
07.03.2022 09:27 •  Геометрия

Наименьшее расстояние между точками двух концентрических окружностей равно 3см , а наибольшее 13 см . найдите радиус этих окружностей

👇
Открыть все ответы
Ответ:
wut123
wut123
07.03.2022

На самом  деле плоскость проходит не через С, а через B и N. На рисунке она правильно изображена. Плоскость АМС сечение пересекает по прямой, параллельной АС. Отсюда сразу следует, что (если обозначить К точку пересечения МА и сечения), что поскольку KN II AC, АК/КС = CN/NM = 1/2;

Поэтому, во первых, KN = АC*2/3) (из подобия треугольников АМС и MKN), и - во вторых, (если обозначить Р - точку пересечения высоты пирамиды МО и сечения) МР/РО = 2/1, то есть Р - точка пересечения медиан треугольника MBD. То есть прямая ВР, лежащая в плоскости сечения - это медиана треугольника MBD. То есть сечение делит MD пополам (надо еще обозначить Q - середина MD). 

Легко видеть, что KN перпендикулярно плоскости MBD (обоснование! - самостоятельно), то есть KN перпендикулярно BQ. Таким образом, в четырехугольнике BKQN, который получается в сечении, диагонали KN и BQ взаимно перпендикулярны.

Площадь BKQN равна половине произведения диагоналей, S = KN*BQ/2; KN = 2√2/3; осталось найти BQ. 

BQ - медиана в равнобедренном треугольнике BMD со сторонами BM = MD =2; BD = √2;

(2*BQ)^2 = 2*(BD)^2 + MD^2 = 8; BQ = √2; (занятно, что треугольник BQD подобен треугольнику MBD);

S = √2*(2√2/3)/2 = 2/3.

4,8(18 оценок)
Ответ:
dedada
dedada
07.03.2022

искомое сечение -  симметричный четырехугольник  BPKL

диагонали  PL , BK  пересекаются под углом 90 град

по условию

стороны основания  AB=BC=CD=AD =3

боковые ребра  MA=MB=MC=MD =8

точка К - середина ребра MD ;  KD = MD /2 = 8/2=4

ABCD -квадрат

диагональ  AC = BD =  3√2

пересечение диагоналей  точка  F  :  BF =FD = BD/2 =3√2 /2 =1.5√2

BK - медиана треугольника  MBD

длина медианы  BK = 1/2 √(2 BM^2 +2 BD^2  - MD^2 ) =1/2 √(2*8^2 +2*(3√2)^2  - 8^2 ) =5

по теореме косинусов

cos KBD = ( KD^2 - (BK^2+BD^2) )/ (-2*BK*BD)= ( 4^2 - (5^2+(3√2)^2) )/ (-2*5*3√2)= 9/(10√2)

MF - высота

треугольник  EBF - прямоугольный

BE = BF / cos KBD = 1.5√2 / [ 9/(10√2)] = 10/3

по теореме Пифагора EF =√(BE^2 - BF^2) =√( (10/3)^2 - (1.5√2)^2) =√238/6

MF - высота

треугольник  MFB - прямоугольный

по теореме Пифагора MF =√( MB^2 -BF^2) =√( 8^2- (1.5√2)^2 ) =√238/2

ME =MF -EF =√238/2- √238/6= √238/3

треугольники  MPL  ~ MCA    подобные

PL / AC = ME /MF ; PL = AC * ME /MF = 3√2 * √238/3 /√238/2 =2√2

площадь   сечения(четырехугольника  BPKL)     

Sс = PL*BK *sin<BEP /2 = 2√2*5*sin90 /2 = 5√2         

ответ  5√2

4,6(20 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ