а)8+2а
б)а и (180°-а)°
в) Р=22, углы 60° и 120°
Объяснение:
а) Так как у ∆ АВН катет напротив угла 30° равен 2 то гипотенуза ( в два раза больше) равна 4. Периметр равен 2 (ВС+АВ) ( по определению противоположные стороны равны)
б)Так как у ∆ЕКР высота является медианой он равнобедренный (свойство) тогда угол КРЕ = углу КЕР= углу М = а (свойство параллелограмма) и односторонний ему равен (180°- а)
в)∆QRN — равносторонний так как ST=QR(по определению параллелограмма)=4 ( что равно QN) тогда угол Q = 60° = углу S и односторонний ему угол Т = 180°-60°=120°
Так как треугольник равносторонний, то все его стороны равны. АВ=ВС=АС=2√3Биссектриса в равностороннем треугольнике является медианой и высотой. Медиана ВН (она же биссектриса, она же высота) делит треугольник АВС на два треугольника. B AHC Рассмотрим треугольник АВН: Т. к ВН-биссектриса, то угол АВН=30° (т. к в равностороннем треугольнике все углы равны 60°).Треугольник АВН - прямоугольный (т. к ВН еще и высота). По св-ву прямоугольного треугольника, один из углов которого равен 30°:АВ - гипотенуза треугольника АВН. АН - катет, лежащий против угла в 30°.Значит, АН=1/2*АВАН=1/2*2√3АН=√3Теперь, по теореме Пифагора найдем сторону ВН. АВ2=ВН2+АН2(2√3)2=х2+(√3)2(√12)2=х2+312=х2+3 ==> х2=9 х=3ВН=3 см. ответ: ВН=3 см