Только потому, что мне очень нравятся такие вот штуки. Можно сформулировать эту задачу так - к одной из сторон квадрата "пристроен" прямоугольный треугольник, так что сторона квадрата является его гипотенузой. И далее - по тексту. Можно взять три "точно таких же" треугольника, и пристроить к другим сторонам квадрата аналогичным образом, так, что получится больший квадрат, в который вписан меньший квадрат, так, что все вершины его лежат на сторонах большего квадрата. Центры этих квадратов совпадают, потому что, если ПОВЕРНУТЬ всю эту "конструкцию" на 90° вокруг центра меньшего квадрата O, то фигура "перейдет в себя". Поэтому AO - диагональ большого квадрата, то есть - биссектриса угла BAC. Ну, теперь, если напрячься, и разделить 90° пополам, то получится 45°.
Площадь трапеции АВСД- определяем по формуле: S=(AD*BC)/2*h (h-высота трапеции, а у нас и диаметр вписанной окружности). Отрезки касательных по (свойству касательных) равны т.е AN=AZ, NB=BH, HC=CE, ED=ZD и радиусы проведённые в точку касания под углом 90 градусов, образуют прямоугольные треугольники. Рассмотрим прямоугольный треугольник СОД в нём угол СОД- прямой ( по свойству биссектрис трапеции прилежащих к её боковой стороне) сторона ОС= 65 сторона ОД=156, по теореме пифагора найдём гипотенузу прямоугольного треугольника СОД. СД=√(156²+65²)=169. Отрезок ОЕ является радиусом проведённым в точку касания касательной СД, он также является высотой опущенной на гипотенузу в прямоугольном треугольнике ОСД. Найдём его по формуле: ОЕ=(ОС*ОД)/СД (т.к площадь прямоугольного треугольника равна половине произведения катетов). ОЕ=(65*156)/169=60 (радиус окружности равен 60). Высота трапеции равна 2*60=120. Найдём основания трапеции: Рассмотрим треугольник ОДZ- по теореме пифагора найдём ZD=√156²-60²=144. Рассмотрим треугольник АОZ, AZ= √100²-60²=80. Т.о основание АД=144+80=224. АN=AZ=80 (отрезки касательных). Рассмотрим треугольник АВО, (по формуле высоты опущенной на гипотенузу) NO²=AN*NB отсюда NB=NO²/AN=60²/80=45, значит сторона АВ=45+80=125. А т.к NB=BH=45, то сторона ВС=45+25=70. Теперь наконец находим площадь трапеции: S=(224+70)/2*120=17640. СЛОЖНОВАТОЕ РЕШЕНИЕ, НО ВЕРНОЕ!
Можно сформулировать эту задачу так - к одной из сторон квадрата "пристроен" прямоугольный треугольник, так что сторона квадрата является его гипотенузой. И далее - по тексту.
Можно взять три "точно таких же" треугольника, и пристроить к другим сторонам квадрата аналогичным образом, так, что получится больший квадрат, в который вписан меньший квадрат, так, что все вершины его лежат на сторонах большего квадрата.
Центры этих квадратов совпадают, потому что, если ПОВЕРНУТЬ всю эту "конструкцию" на 90° вокруг центра меньшего квадрата O, то фигура "перейдет в себя".
Поэтому AO - диагональ большого квадрата, то есть - биссектриса угла BAC.
Ну, теперь, если напрячься, и разделить 90° пополам, то получится 45°.