Центр правильного треугольника - это центр описанной и вписанной окружности, и расположен он в точке пересечения высот (медиан, биссектрис).
Т.к. все высоты правильного треугольника равны между собой, эта точка делит каждую высоту ( медиану) этого треугольника по свойству медиан в отношении 2:1, считая от вершины , т.е.
АО=ВО=СО,
.Эти отрезки - проекции наклонных МА, МВ, МС
Поскольку проекции равны, то и наклонные равны. Т.е.
МА=МВ=МС
МА по т. Пифагора
МА=√ (АО²+МО²)
АО - радиус описанной окружности и может быть найден по формуле
R=a/√3
или найти длину высоты данного правильного треугольника, и 2 ее трети и будут проекциями наклонных , т.е. равны АО.
Возможно, я не правильно поняла Ваши скобки, но у меня получилось такое решение:
Возьмём правильный четырёхугольник, который вписан в данную окружность. Этот четырёхугольник - квадрат, пусть его сторона равна х. Диагональ этого квадрата равна диаметру окружности равна 2R. Тогда получаем через теорему Пифагора следующее утверждение:
Сторона правильного четырёхугольника стягивает дугу в 360\4=90 градусов, тогда сторона восьмиугольника будет стягивать дугу в 360\8=45 градусов, а двенадцатиугольника - 30 градусов. Пусть сторона восьмиугольника равна а, сторона двенадцатиугольника равна б, составим отношение:
Возможно, это то, что вам нужно, потому что цифры те же, может быть, вы сможете получить требуемое выражение из этого путём преобразований, но дальше, извините я Вам не в силах, потому что, как уже писала, скобки ваши не поняла.
Центр правильного треугольника - это центр описанной и вписанной окружности, и расположен он в точке пересечения высот (медиан, биссектрис).
Т.к. все высоты правильного треугольника равны между собой, эта точка делит каждую высоту ( медиану) этого треугольника по свойству медиан в отношении 2:1, считая от вершины , т.е.
АО=ВО=СО,
.Эти отрезки - проекции наклонных МА, МВ, МС
Поскольку проекции равны, то и наклонные равны. Т.е.
МА=МВ=МС
МА по т. Пифагора
МА=√ (АО²+МО²)
АО - радиус описанной окружности и может быть найден по формуле
R=a/√3
или найти длину высоты данного правильного треугольника, и 2 ее трети и будут проекциями наклонных , т.е. равны АО.
h=a√3):2=6√3):2=3√3
AO=3√3):3)·2=2√3
МА=√(АО² + МО²)=√(12+4)=4 см