Обозначим вершины трапеции аbcd ad=34 bc=2 проведём диагональ ас и опустим высоту сн. трапеция равнобокая dн=(аd-bc)/2=16 ac пересекает параллельные прямые аd и bc поэтому накрест лежащие углы равны . угол саd равен углу асв. кроме того са биссектриса угла всd . поэтому cad также равен углу асd. рассмотрим треугольник асd. в нем мы только что установили что угол а равен углу с. поэтому аd равно dc = 34 теперь рассмотрим треугольник снd. он прямоугольный . угол н прямой. dc=34 dh=16 по теореме пифагора ch = √(34^2-16^2)= 30 площадь трапеции - средняя линия (аd+bc)/2= 18 умножить на найденную высоту сн=30 - равна 540 см^2
параллелограмм АВСД, АК/КВ=2/1=2у/у, АЛ/ЛД=1/3=х/3х, АД=х+3х=4х=ВС, ВМ/МС=1/1 или 2х/2х, из точки Л проводим линию ЛЕ параллельную АВ на ВС, АЛ=ВЕ=х=ЕМ, треугольник ВЛМ ЛЕ-медиана которая делит его на два равновеликих треугольника, S ВЛЕ= S ЕЛМ =S, площадь ВЛМ=S ВЛЕ + S ЕЛМ =2S, АВ=АК+КВ=у+2у=3у, АВМЛ-параллелограм ЛВ-диагональ, площ.АВЛ=площВЛЕ= S, из точки Л проводим высоту ЛТ на АВ, площ.АВЛ=1/2*АВ*ЛТ=1/2*3у*ЛТ, площ.КВЛ=1/2*ВК*ЛТ=1/2*у*ЛТ, площАВЛ/площКВЛ=(1/2*3у*ЛТ)/(1/2*у*ЛТ)=3/1, 3*площ.КВЛ=площАВЛ=S, площКВЛ=S/3, площКВЛ/площВЛМ=(S/3)/2S=1/6
По теореме Пифагора можно найти гипотенузу
AB в квадрате= AC в квадрате+ BC в квадрате
AB в квадрате=5 в квадрате+5 корней из 3 в квадрате
АВ в квадрате= 25+15
АВ в квадрате=40
АВ=квадратному корню из 40