1. Измерить провести окружность с центром в вершине неразвернутого угла и радиусом, равным длине отрезка. 2. Соединить точки пересечения окружности со сторонами угла. 3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы. 4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.
Дано: ABC - прямоугольный треугольник BD - высота, BD=24 см DC=18 смНайти: cosA; AB.Решение: 1) Т.к. BD - высота, то треугольник BDC - прямоугольный. По теореме Пифагора можно найти BC:BC²=BD²+DC²BC²=24²+18²BC²=576+324=900BC=30 см.2) В треугольникеДано: ABC - прямоугольный треугольник BD - высота, BD=24 см DC=18 см Найти: cosA; AB. Решение: 1) Т.к. BD - высота, то треугольник BDC - прямоугольный. По теореме Пифагора можно найти BC: BC²=BD²+DC² BC²=24²+18² BC²=576+324=900 BC=30 см. 2) В треугольнике BDC tgC=24/18=8/6. В треугольнике ABC tgC=AB/BC. Отсюда пропорция: 8/6=AB/30 AB=8*30/6 AB=40 см 3) По теореме Пифагора находим AC: AC²=AB²+BC² AC²=1600+900=2500 AC=50 см. 4) cosA=AB/AC cosA=24/50=0,48
ответ: cosA=0,48; AB=40 см. BDC tgC=24/18=8/6. В треугольнике ABC tgC=AB/BC. Отсюда пропорция:8/6=AB/30AB=8*30/6AB=40 см3) По теореме Пифагора находим AC:AC²=AB²+BC²AC²=1600+900=2500AC=50 см.4) cosA=AB/ACcosA=24/50=0,48 ответ: cosA=0,48; AB=40 см.
2. Соединить точки пересечения окружности со сторонами угла.
3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы.
4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.