М∈АВ
N∈BC
P∈AC
И делит стороны так, что
MB=2AM, NC=2BN, AP=2PC, т.е. соотношение1:2
Отношение площадей треугольников имеющих равный (общий) угол равно произведению сторон содержащих этот угол. Доказательство этого факта приводить не буду. Желающие найдут (сделают :-) сами.
Рассмотрим, исходя из этого, треугольники АВС и AMP.
S(ABC)/S(AMP) = (AB*AC)/(AM*AP) (1)
Примем меньший отрезок АМ за 1 часть, соответственно MB будет 2 части.
Т.е. AB/AM = 3/1, AC/AP=3/2, подставим эти соотношения в выражение (1) для соотношения площадей треугольников получим:
S(ABC)/S(AMP) = (3*3)/(1*2) = 9/2, т.е. S(AMP)=(2/9)*S(ABC) =(2/9)*S
Можно провести аналогичные рассуждения для оставшихся треугольников, но учитывая соотношения сторон легко :-) заметить, что площади всех маленьких треугольников AMP, MBN, PNC равны и равны (2/9)*S.
Т.о. искомая площадь треугольника MNP будет равна
S-3*((2/9)*S) = 1/3 S, одной трети площади ABC, равной S.
И ещё. В чем смысл подобных задач? В том что ты учишься находить решение.
Сегодня это геометрия. Через годы это будут другие, более серьезные проблемы. На этом сайте ты научишься только списывать. Скачай себе
"Гордин-Планиметрия 7-9" и реши хотя бы одну задачу на соотношение площадей. Тогда я буду считать, что не зря потратил время, набивая всё это.
С тебя "69" :-)
Данный двугранный угол равен линейному SEO, где Е - середина стороны AD.
Квадрат со стороной 18 имеет диагональ 18 корней из 2, половина этой диагонали - отрезок ОА - равен 9 корней из 2. Из треугольника ASO находим:
SA = 18 корней из 2.
Поскольку в основании квадрат, то SA = SD, треугольник ASD равнобедренный с тремя известными нам сторонами: 18 корней из 2; 18 корней из 2; 18.
Высота, проведенная к основанию SE = 9 корней из 7.
Отрезок ОЕ = 18/2 = 9
Косинус угла SEO равен (корень из 7)/7
Искомый угол равен arccos√7/7.
P = 45 СМ.
Объяснение: