если разрезать данный треугольник пополам - по высоте, то получатся два прямоугольных треугольника, в которых
a=катет1= высота =6
b=катет2= половина основания =(х+6)/2
c=гипотенуза =боковая сторона = х
по теореме Пифагора
c^2 = a^2 +b^2
x^2 = 6^2 +((х+6)/2)^2
x^2 = 36 +(х+6)^2/4 - домножим обе части на 4
4x^2 = 144 +(х+6)^2
4x^2 = 144 +х^2+24x+36
4x^2 -х^2-24x-180=0
3x^2 -24x-180=0 - делим на 3
x^2 -8x-60=0
квадратное уравнение
D= 304
x1=4-2√19 < 0 - по смыслу не подходит
x2=4+2√19 - боковая сторона
6+x2 =6+4+2√19=10+2√19 или 2(5+√19) - основание
Основанием прямого параллелепипеда ABCDA1B1C1D1 является ромб АВСD, сторона которого равна а и угол равен 60°. Плоскость АD1C1 составляет с плоскостью основания угол 60°.
(Здесь нужно заметить, что не диагональ боковой грани ВС1 составляет угол 60°, а перпендикуляр С1Н к АВ)
Найдите:
а) высоту ромба;
Данный ромб состоит из двух равносторонних треугольников с общей стороной СА.
Высота СН равностороннего треугольника АВС равна высоте ромба:
h=а*sin(60°)=а(√3):2
б) высоту параллелепипеда;
Параллелепипед прямой. Высотой является С1С, - она перпендикулярна плоскости ромба по условию - и с СН является катетом прямоугольного треугольника СС1Н с прямым углом при С.
С1С:СН=tg(60°)
C1C=tg(60°)*CH=√3*а(√3):2=3a/2=1,5a
в) площадь боковой поверхности параллелепипеда:
Sбок=Р(ABCD)*H=4a*1,5a=6a²
г)площадь поверхности параллелепипеда:
Она состоит из суммы площадей 2-х оснований и боковой поверхности:
2S◊(ABCD)=2*a²*sin(60°)=2*0,5*a²√3=a²√3
S полн=6a²+a²√3=а²(6+√3)