Треугольник BC1A1 - равносторонний, все его углы равны 60°;
Более того, фигура BC1A1D - правильный тетраэдр. Это позволяет легко (это еще мягко сказано, скорее ЧЕНЬ легко) доказать многие, на первый взгляд, сложные соотношения в тетраэдре. Например, если в правильном тетраэдре соединить середины скрещивающихся сторон, то все три таких отрезка взаимно перпендикулярны и пересекаются в одной точке - середине этих отрезков :))). В построенной "конструкции" речь идет об отрезках, соединяющих центры противоположных граней куба. Ясно, что они все взаимно перпендикулярны и пересекаются в центре куба. И это - все решение :)
Как известно, в равнобедренном треугольнике попарно равны боковые стороны и углы при основании. Доказательство будем строить именно на этом.
Предположим, что тр-к ABC - равнобедренный
1) Проведём высоту AK к основанию BC. По св-ву равнобедр. тр., она будет также медианой и биссектрисой. Значит, тр-ки ABK b ACK будут равны по стороне и двум прилежащим углам (половины основания, углы при основании и два прямых угла).
2) Проведём высоты BM и CH к сторонам АС и АВ соответственно. Три высоты пересекутсся в точке О, и все они будут делиться по соотношению 2:1, считая от вершин. В 1 действии мы доказали, что тр. ABK и ACK равны. Значит, если высоты пересекаются в одной точке , лежащей на общей стороне AK этих двух треугольников, то отрезки высот - BO-OM и CO-OH будут равны (т.к. не смещена линия симметрии): BO=CO OM=OH
Если равны все отрезки высот, то буду равны и целые высоты: BM = CH, чтд.
Более того, фигура BC1A1D - правильный тетраэдр. Это позволяет легко (это еще мягко сказано, скорее ЧЕНЬ легко) доказать многие, на первый взгляд, сложные соотношения в тетраэдре. Например, если в правильном тетраэдре соединить середины скрещивающихся сторон, то все три таких отрезка взаимно перпендикулярны и пересекаются в одной точке - середине этих отрезков :))). В построенной "конструкции" речь идет об отрезках, соединяющих центры противоположных граней куба. Ясно, что они все взаимно перпендикулярны и пересекаются в центре куба. И это - все решение :)