М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kristya0414
kristya0414
02.05.2020 23:15 •  Геометрия

Найдите длину вектора АВ, если А(0;-1;2), В(-3;5;0).

👇
Открыть все ответы
Ответ:
milana368
milana368
02.05.2020
1. Формула диагонали прямоугольника через 2 стороны прямоугольника (по теореме Пифагора): 2. Формула диагонали прямоугольника через площадь и сторону: 3. Формула диагонали прямоугольника через периметр и сторону: 4. Формула диагонали прямоугольника через радиус окружности (описанной):d = 2R 5. Формула диагонали прямоугольника через диаметр окружности (описанной):d = Dо 6. Формула диагонали прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу: 7. Формула диагонали прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны, которая прилегает к этому углу: 8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника: Признаки прямоугольника. Параллелограмм - это прямоугольник, если выполняются условия:- Если диагонали его имеют одинаковую длину.- Если квадрат диагонали параллелограмма равняется сумме квадратов смежных сторон.- Если углы параллелограмма имеют одинаковую величину. Стороны прямоугольника. Длинная сторона прямоугольника является длиной прямоугольника, а короткая - ширина прямоугольника. Формулы для определения длин сторон прямоугольника: 1. Формула стороны прямоугольника (длина и ширина прямоугольника) через диагональ и еще одну сторону: 2. Формула стороны прямоугольника (длина и ширина прямоугольника) через площадь и еще одну сторону: 3. Формула стороны прямоугольника (длина и ширина прямоугольника) через периметр и еще одну сторону: 4. Формула стороны прямоугольника (длина и ширина прямоугольника) через диаметр и угол α:a = d sinαb = d cosα 5. Формула стороны прямоугольника (длина и ширина прямоугольника) через диаметр и угол β: Окружность, описанная вокруг прямоугольника. Окружность, описанная вокруг прямоугольника - это круг, который проходит сквозь 4-ре вершины прямоугольника, с центром на пересечении диагоналей прямоугольника. Формулы определения радиуса окружности описанной вокруг прямоугольника: 1. Формула радиуса окружности, которая описана около прямоугольника через 2-е стороны: 2. Формула радиуса окружности, которая описана около прямоугольника через периметр квадрата и сторону: 3. Формула радиуса окружности, которая описана около прямоугольника через площадь квадрата: 4. Формула радиуса окружности, которая описана около прямоугольника через диагональ квадрата: 5. Формула радиуса окружности, которая описана около прямоугольника через диаметр окружности (описанной): 6. Формула радиуса окружности, которая описана около прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу: 7. Формула радиуса окружности, которая описана около прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны у этого угла: 8. Формула радиуса окружности, которая описана около прямоугольника через синус острого угла между диагоналями и площадью прямоугольника: Угол между стороной и диагональю прямоугольника. Формулы для определения угла между стороной и диагональю прямоугольника: 1. Формула определения угла между стороной и диагональю прямоугольника через диагональ и сторону: 2. Формула определения угла между стороной и диагональю прямоугольника через угол между диагоналями: Угол между диагоналями прямоугольника. Формулы для определения угла меж диагоналей прямоугольника: 1. Формула определения угла меж диагоналей прямоугольника через угол между стороной и диагональю:β = 2α 2. Формула определения угла между диагоналями прямоугольника через площадь и диагональ:
4,6(26 оценок)
Ответ:
1LOSI1
1LOSI1
02.05.2020

Объяснение:

EB=EF, значит треугольник EBF - равнобедренный.

и угол EBF равен углу EFB.

Углы ВАС и ВСА равны, т.к. треугольник АВС равнобедренный, значит можно записать, что угол АСВ равен (180°-∠АВС) / 2

Угол CFE и EFB смежные, и в сумме 180°

Значит ∠EFC = 180°-∠EFВ = 180°-∠EBF = 180°-∠АВС

Биссектриса делит угол EFC пополам, значит

∠KFC = 1/2 EFC =  (180°-∠АВС) / 2 = ∠АСВ

Поскольку ∠АСВ=∠KCF=∠KFC, то треугольник СKF имеет равные углы при основании CF следовательно  он равнобедренный.

А в равнобедренном треугольнике СКF KC=KF, что и требовалось доказать.

4,4(85 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ