Соединив данную точку с вершинами треугольника, получим треугольную пирамиду с равными (это вытекает из условия) рёбрами. Но тогда будут равны и их проекции на плоскость треугольника и на плоскость, перпендикулярную плоскости треугольника. Так как вторые проекции лежат на прямых, проходящих через вершину пирамиды и пересекающих плоскость треугольника в одной точке (равноудалённой от вершин треугольника), то эти проекции совпадают). Но по условию через вершину пирамиды и данную точку проходит и данная в условии прямая. А это значит, что она совпадает с проекцией рёбер пирамиды на плоскость, перпендикулярную плоскости треугольника. Но эта проекция, а вместе сней и данная прямая, перпендикулярна плоскости треугольника.
В соответствии с классическим определением, угол между векторами,отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда - - угол между векторами СА и СВ равен ∠АСВ=90°; - угол между векторами ВА и СА равен ∠САВ=50°; - угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°