а)в основании пирамиды прямоугольник. по теореме пифагора ас2=ad2+dc2=122+52=144+25=169ac=13.δ asc – равнобедренныйsa–ac=13перпендикуляр ah – высота равнобедренного треугольника, которая одновременно является и медианой.значит,sh=hcб)рассмотрим треугольник равнобедренный (sb=sc=13)треугольник sbc.высота sp равнобедренного треугольника делит сторону вс пополам.вр=рс=6в а) доказано, что sh=hc,значит hp – средняя линия δ sbc и hp|| sbпроводим pf ⊥ sb и hk || pf ⇒ hk ⊥ sb.hk=pfpf– высота прямоугольного треугольника sbp.sb=13bp=6sp=√sb2–bp2=√169–36=√133так как sδ sbp=(1/2)sb·pf и sδ sbp=(1/2)·bp·sp, тоpf· sb=bp·sb ⇒ pf=6·√133/13hk=pf=6·√133/13о т в е т.6·√133/13
В тр-ке АВС ∠А=α, ∠В=β, ∠С=90°. АМ⊥MN и BN⊥MN. СО - радиус описанной окружности и одновременно медиана, СО⊥MN. АМ=а, BN=b. СО=ВО, значит тр-ник ВОС - равнобедренный, ∠ВСО=∠СВО. Тр-ки АВС и АСД подобны, т.к. ∠А - общий и оба прямоугольные, значит ∠АСД=∠В=β ∠ДСО=∠С-∠АСД-∠ВСО=90°-2β. ∠АМС=∠МСО-∠АСД-∠ДСО=90-β-(90-2β)=β ⇒ ΔАСД=ΔАСМ (по углам и общей стороне), значит АД=АМ=а. ∠ВСN=∠NCO-∠BCО=90-β=α, значит ΔВСN=ΔВСД (по углам и общей стороне), значит ВД=BN=b. В тр-ке АВС СД - высота СД²=АД·ВД=ab. В тр-ке АСД АС=√(АД²+СД²)=√(a²+ab)=√[a(a+b)] - это ответ. В тр-ке ВСД ВС=√(ВД²+СД²)=√(b²+ab)=√b[(a+b)] - это ответ.
а)в основании пирамиды прямоугольник. по теореме пифагора ас2=ad2+dc2=122+52=144+25=169ac=13.δ asc – равнобедренныйsa–ac=13перпендикуляр ah – высота равнобедренного треугольника, которая одновременно является и медианой.значит,sh=hcб)рассмотрим треугольник равнобедренный (sb=sc=13)треугольник sbc.высота sp равнобедренного треугольника делит сторону вс пополам.вр=рс=6в а) доказано, что sh=hc,значит hp – средняя линия δ sbc и hp|| sbпроводим pf ⊥ sb и hk || pf ⇒ hk ⊥ sb.hk=pfpf– высота прямоугольного треугольника sbp.sb=13bp=6sp=√sb2–bp2=√169–36=√133так как sδ sbp=(1/2)sb·pf и sδ sbp=(1/2)·bp·sp, тоpf· sb=bp·sb ⇒ pf=6·√133/13hk=pf=6·√133/13о т в е т.6·√133/13