Применим известный метод построения срединного перпендикуляра ( деления отрезка пополам).
Из вершины А,как из центра, на сторонах АВ и АС отмечаем циркулем равные отрезки АЕ и АТ.
Из т.т. Е и Т как из центров проводим полуокружности. Соединим точки их пересечения прямой. Они пройдут через А и пересекут ВС в точке К.
АК - биссектриса, т.к. треугольник АЕТ - равнобедренный по построению, АК - срединный перпендикуляр, для равнобедренного треугольника он медиана и биссектриса.
б) медианы ВМ
Для построения медианы ВМ по вышеописанному методу находим середину АС и соединяем с вершиной В.
в) высоты СН.
Для построения высоты находим точку О - середину АС. Из нее как из центра проводим окружность радиусом АО. АО=ОС, АС - диаметр. Точка пересечения окружности с АВ - основание высоты СН, т.к. вписанный угол АНС опирается на диаметр и равен 90°.
1)Пусть С- прямой угол в прямоугольном треугольнике АВС, тогда СН-высота проведенная к гипотенузе, СМ- биссектриса,проведенная к гипотенузе. 2)По условию сказано, что угол между СМ и СН равен 15 градусов. 3)По свойству биссектрисы угол АСМ= углу МСВ=45 градусов(т.к С по условию 90),значит, так как угол НСМ=15 градусов, а угол НСМ+угол АСН=45 градусов, то угол АСН равен 30 градусам. 4)Так как СН высота, то угол СНА равен 90 градусов, следовательно угол САН=60 градусов( по теореме о сумме углов треугольника). 5)Значит, в треугольнике АВС угол В = 180-90-60=30 градусов( по теореме о сумме углов треугольника) 6) Так как в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то АС=3 см 7) По теореме Пифагора СВ= 3 корня из 3 ответ: 3 и 3корня из 3
Построение с циркуля и линейки.
а) биссектрисы АК.
Применим известный метод построения срединного перпендикуляра ( деления отрезка пополам).
Из вершины А,как из центра, на сторонах АВ и АС отмечаем циркулем равные отрезки АЕ и АТ.
Из т.т. Е и Т как из центров проводим полуокружности. Соединим точки их пересечения прямой. Они пройдут через А и пересекут ВС в точке К.
АК - биссектриса, т.к. треугольник АЕТ - равнобедренный по построению, АК - срединный перпендикуляр, для равнобедренного треугольника он медиана и биссектриса.
б) медианы ВМ
Для построения медианы ВМ по вышеописанному методу находим середину АС и соединяем с вершиной В.
в) высоты СН.
Для построения высоты находим точку О - середину АС. Из нее как из центра проводим окружность радиусом АО. АО=ОС, АС - диаметр. Точка пересечения окружности с АВ - основание высоты СН, т.к. вписанный угол АНС опирается на диаметр и равен 90°.
Высота построена.