ДАНО: плоскость АВС ; угол ACB = 90° ; AD перпендикулярен ( АВС ) ; ABC = 30° ; AB = 6 см ; DC = 2√3 см.
НАЙТИ: угол между ( АВС ) и ( DBC ) _______________________________
РЕШЕНИЕ:
Чтобы найти угол между двумя плоскостями, нужно найти линейный угол двугранного угла.
Линейным углом двугранного угла называется угол, образованный лучами с вершиной на прямой а ( ребре ), лучи которого лежат на гранях двугранного угла и перпендикулярны прямой а ( ребру )
1) АD перпендикулярен ( АВС )
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости =>
AD перпендикулярен АС, АВ, ВС
2) AD перпендикулярен АС АС перпендикулярен ВС
Значит, по теореме о трёх перпендикулярах CD перпендикулярен ВС
Следовательно, угол АСD - линейный угол двугранного угла АВСD, то есть угол ACD - искомый угол между плоскостями АВС и DBC
3) Рассмотрим ∆ АВС ( угол АСВ = 90° ):
Катет, лежащий против угла в 30°, равен половине гипотенузы.
1)г. 2)б. 3)а. 4)в. 5)я прикрепила картинку к этому заданию.Не забудь написать «Дано: треугольникABC; a=7;b=8;c=5. Найти : <А-?» ответ , кстати , в конце <А=60 градусов.(просто не поместилось.) 6)AB=10x
S=pr
p=13x+13x+10x2=18x
S=p(p−13x)(p−13x)(p−10x)‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√ — по формуле Герона.
7) если СК биссектриса, то по ее свойству если СЕ/СВ=3:1 то и КЕ:ВК=3:1 Обозначим ВК=у, КЕ=3у значит, ВЕ=4у т.к. угол ВОЕ центральный для угла С, то он=120 и тогда ∠ВОК=60 ВМ=ВО*sin 60 BM=8√3*√3/2=12 ВЕ=4у=24 ⇒ у=6 3у=3*6=18
8) 1. Теорема синусов для треугольника КОР KP/sin KOP=OP/sin OKP sin OKP=3*sqrt2*sqrt2/2/5=3/5 cos^2(OKP)=1-sin^2(OKP)=(4/5)^2 Т.к. КОР тупой, то ОКР острый, cos OKP=4/5 2. sin OPK=sin(180-KOP- OKP)=sin(KOP+OKP)=sin KOP*cos OKP+cos KOP*sin OKP sin OPK=sqrt2/2*(4/5-3/5)=sqrt2/10 3. S(KMP)=2*S(KOP)=OP*KP*sin OPK=3*sqrt2*5* sqrt2/10=3
9) Если диагонали трапеции перпендикулярны, то площадь можно найти по следующим формулам: S-Һв квадрате, где һ-высота или S-(a+b)в квадрате/4, где а иb -основания Воспользуемся последней формулой!Т к дана длина ср линии трапеции, то можно найти сумму длин оснований трапеци: ср линия3 1/2(а+b); 5%31/2(а+b); (а+b)-10см Найдем S- (а+b)в квадрате/4 %3D10в квадрате/ 4-25см2
НАЙТИ: угол между ( АВС ) и ( DBC )
_______________________________
РЕШЕНИЕ:
Чтобы найти угол между двумя плоскостями, нужно найти линейный угол двугранного угла.
Линейным углом двугранного угла называется угол, образованный лучами с вершиной на прямой а ( ребре ), лучи которого лежат на гранях двугранного угла и перпендикулярны прямой а ( ребру )
1) АD перпендикулярен ( АВС )
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости =>
AD перпендикулярен АС, АВ, ВС
2) AD перпендикулярен АС
АС перпендикулярен ВС
Значит, по теореме о трёх перпендикулярах
CD перпендикулярен ВС
Следовательно, угол АСD - линейный угол двугранного угла АВСD, то есть угол ACD - искомый угол между плоскостями АВС и DBC
3) Рассмотрим ∆ АВС ( угол АСВ = 90° ):
Катет, лежащий против угла в 30°, равен половине гипотенузы.
АС = 1/2 × АВ = 1/2 × 6 = 3 см
2) Рассмотрим ∆ АСD ( угол CAD = 90° ):
cos ACD = AC / DC =
Значит, угол ACD = 30°
ОТВЕТ: угол между ( АВС ) и ( DBC ) = 30°