Составьте уравнение окружности с центром в точке С(7; -1) и радиусом R=3.
Составьте уравнение прямой, проходящей через две точки М(-2;2) и Р(4;5).
Задание 4. (4 б)
АВ – диаметр окружности с центром С. Координаты А(-6; -5) и В(4; 3), найдите:
a) координаты центра С
b) запишите уравнение окружности
с) выполните рисунок по условию задачи помагите чем сможете да
Синус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе.
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему.
а) По теореме Пифагора:
AC = √(AB² - BC²) = √(17² - 8²) = √(289 - 64) = √225 = 15
sin∠A = BC / AB = 8/17 sin∠B = AC / AB = 15/17
cos∠A = AC / AB = 15/17 cos∠B = BC / AB = 8/17
tg∠A = BC / AC = 8/15 tg∠B = AC / BC = 15/8
б) По теореме Пифагора:
АВ = √(BC² + AC²) = √(21² + 20²) = √(441 + 400) = √841 = 29
sin∠A = BC / AB = 21/29 sin∠B = AC / AB = 20/29
cos∠A = AC / AB = 20/29 cos∠B = BC / AB = 21/29
tg∠A = BC / AC = 21/20 tg∠B = AC / BC = 20/21
в) По теореме Пифагора:
АВ = √(BC² + AC²) = √(1² + 2²) = √(1 + 4) = √5
sin∠A = BC / AB = 1/√5 sin∠B = AC / AB = 2/√5
cos∠A = AC / AB = 2/√5 cos∠B = BC / AB = 1/√5
tg∠A = BC / AC = 1/2 tg∠B = AC / BC = 2
г) По теореме Пифагора:
ВС = √(АВ² - AC²) = √(25² - 24²) = √(625 - 576) = √49 = 7
sin∠A = BC / AB = 7/25 sin∠B = AC / AB = 24/25
cos∠A = AC / AB = 24/25 cos∠B = BC / AB = 7/25
tg∠A = BC / AC = 7/24 tg∠B = AC / BC = 24/7