Вариант решения.
ответ: 10 (ед. длины)
Объяснение:
Одна из формул площади параллелограмма
S=a•b•sinα, где а и b стороны с общей вершиной, α - угол между ними.
Ромб - параллелограмм с равными сторонами.
S=a•a•0.8=320 ⇒ a²=320:0,8=400 ⇒ a=√400=20. ⇒ АВ=ВС=20
Опустим высоту СН. Из ∆ СВН высота ромба СН=СВ•sinB=20•0,8=16
По т.Пифагора ВН=√(BC²-CH²)=12
Примем длину СК=х. Тогда КН=16-х.
Прямоугольные треугольники ВКН и СКD подобны по равному острому углу при К. Из подобия следует отношение:
СD:BH=CK:KH
20:12=x:(16-x)
Решив уравнение, получим х=10.
СК=10 ( ед. длины)
AB = √((2+3)²+(3+2)²+(4-5)²) = √(5²+5²+1²) = √51
AC = √((2-3)²+(3+4)²+(4+4)²) = √(1²+7²+8²) = √114
ВС = √((-3-3)²+(-2+4)²+(5+4)²) = √(6²+2²+9²) = √121 = 11
Полупериметр
p = (√51 + √114 + 11)/2
Площадь по формуле Герона
S² = p*(p-a)*(p-b)*(p-c)
S² = (√51 + √114 + 11)/2 * ((√51 + √114 + 11)/2-√51) * ((√51 + √114 + 11)/2-√114) * ((√51 + √114 + 11)/2-11)
S² = 1/2⁴*(√51 + √114 + 11) * (-√51 + √114 + 11) * (√51 - √114 + 11) * (√51 + √114 - 11)
Первые две скобки
(√51 + √114 + 11) * (-√51 + √114 + 11) = (√114 + 11)² - (√51)² = 114 + 22√114 + 121 - 51 = 184 + 22√114
Вторые две скобки
(√51 - √114 + 11) * (√51 + √114 - 11) =
= 51 + √51*√114 - 11√51
- √114*√51 - 114 + 11√114
+ 11√51 + 11√114 - 121
= - 184 + 22√114
---
S² = (22√114)² - 184² = 484*114 - 33856 = 21320
S = 1/2⁴ * 21320 = 2665/2
S = √(2665/2)