Диагональ прямоугольника образует два равных прямоугольных треугольников является гипотенузой. Угол, который образуется шириной(катетом) и диагональю(гипотенузой) равен 60°. Значит другой острый угол равен 30°. Катет лежащий против угла 30° равен половине гипотенузе. Ширина прямоугольника и является катетом, который лежит против угла 30°.
Катет(ширина)=8√3/2=4√3.
ДЛина прямоугольника будет являться катетом прямоугольного треугольника. Мы можем его найти по теореме Пифагора.
Катет(ширина) обозначим а, гипотенуза(диагональ) обозначим с, катет(длина) обозначим б.
Найдём его по теореме Пифагора:
б^2=с^2-а^2
б^2=(8√3)^2-(4√3)^2=192-48=144
б=√144=12
Длина больше ширины а прямоугольнике. Если корень в квадрате, то корень убирается.
Угол АДВ=180-60=120 Треугольник АВД-равнобедренный,т.к угол ABD=DAB (у равнобедренного треугольника углы при основании равны). 3. Угол DBC=180-(60+60)=60. Значит треугольник BDC- равносторонний( у равносторон. треугольника все углы равны 60). Следовательно CD=BC=BD=AD=5. 4.AC=AD+DC AC=5+5=10 5. DH-расстояние от точки D до AB,Значит угол DHC равен 90 (расстояние от точки до прямой- перпендикуляр от точки до прямой). 6. В треугольнике DHC, DH-катет лежащий против угла в 30 градусов. Значит он равен половине гипотенузы. DH= 0.5*AD DH=0.5*5=2.5 ответ:10; 2,5
12
Объяснение:
Диагональ прямоугольника образует два равных прямоугольных треугольников является гипотенузой. Угол, который образуется шириной(катетом) и диагональю(гипотенузой) равен 60°. Значит другой острый угол равен 30°. Катет лежащий против угла 30° равен половине гипотенузе. Ширина прямоугольника и является катетом, который лежит против угла 30°.
Катет(ширина)=8√3/2=4√3.
ДЛина прямоугольника будет являться катетом прямоугольного треугольника. Мы можем его найти по теореме Пифагора.
Катет(ширина) обозначим а, гипотенуза(диагональ) обозначим с, катет(длина) обозначим б.
Найдём его по теореме Пифагора:
б^2=с^2-а^2
б^2=(8√3)^2-(4√3)^2=192-48=144
б=√144=12
Длина больше ширины а прямоугольнике. Если корень в квадрате, то корень убирается.