Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
Катеты прямоугольного треугольника 42 и 56 см. На каком расстоянии от плоскости треугольника находится точка, равноудаленная от вершин треугольника на 125 см.
Пусть данный треугольник АВС, угол С=90º. Точка К удалена от А, В, С на 125 см.
Наклонные КА=КС=КВ=125 см, следовательно, их проекции на плоскость треугольника равны радиусу описанной вокруг ∆ АВС окружности.
АМ=ВМ=СМ=R
Центр этой окружности лежит на середине М гипотенузы АВ.
АВ=√(AC²+BC²)=√(1764+3136)=70 см
R=АВ:2=35
Расстояние от точки до плоскости измеряется длиной перпендикуляра, опущенного из этой точки на плоскость.
Из ∆ КМА
КМ=√(AK²-AM²)=√14400=120 см