Объяснение:
Задача 11:
угол A=С, следовательно этот треугольник равнобедренный
BD=1/2AB, значит угол A=30
тогда угол В=30 , т. к угол А=С
тогда угол В равен: 180-(30*2)=180-60=120.
Задача 12:
ВА=ВС, значит угол А=С
угол В=120
тогда угол А=(180-120)/2=30
угол НВА=180-120=60
угол ВНА=90
тогда угол ВАН=30
АС=4 см
если из угла АВС проведем медиану ВМ, то она будет и биссектрисой, и высотой, а значит
угол АНМ будет равен 60,
тогда получается, что треугольники АВМ и НВА равны, а значит АН=АМ=2 см (т. к ВМ медиана, значит делит сторону АМ на две равные части)
Боковая сторона равнобедренного треугольника равна 10 см, а его основание 12 см. Найдите его площадь.
Биссектриса угла А параллелограмма ABCD делит сторону ВС на отрезки ВК и КС, равные соответственно 8 см и 4 см. Найдите периметр параллелограмма.
В трапеции ABCD углы А и В прямые. Диагональ АС — биссектриса угла А и равна 6 см. Найдите площадь трапеции, если угол CDA равен 60°.
В окружности проведены две хорды АВ и CD, пересекающиеся в точке К, КС = 6 см, АК = 8 см, ВК + DK = 16 см. Найдите длины ВК и DK.
Квадрат со стороной 8 см описан около окружности. Найдите площадь прямоугольного треугольника с острым углом 30°, вписанного в данную окружность.
10
Объяснение:
S=1/2ah отсюда следует,что h=2s/a =2*40/8=10