Пусть основание равно 6х, тогда боковая сторона равна 5х. Высота к основанию равнобедренного треугольника является также медианой, значит делит основание на части по 3х каждая. Запишем теорему Пифагора для одного из прямоугольных треугольников: Основание равно 6х=6*2,5=15, боковые стороны равны 5x=12,5. Площадь треугольника с одной стороны равна полупроизведению высоты на основание S=1/2*15*10=75. С другой стороны площадь треугольника равна произведению длин сторон разделить на четыре радиуса описанной окружности, то есть: ответ: 7,8125
Так как точка Д лежит на биссектрисе угла А, то расстояние от точки Д до сторон АВ и АС равно.
Откладываем основание АС = PQ. Параллельно ему на расстоянии P2Q2 проводим прямую. Из точки А проводим засечку радиусом P1Q1 до параллельной прямой и находим точку Д. Из тоски С через точку Д проводим прямую. Из точки А под углом, равным углу С, проводим прямую и в точке пересечения этих прямых будет точка В. Построение окончено.
Точку В можно найти другим из середины АС восстановить перпендикуляр до пересечения с прямой СД.
Высота к основанию равнобедренного треугольника является также медианой, значит делит основание на части по 3х каждая.
Запишем теорему Пифагора для одного из прямоугольных треугольников:
Основание равно 6х=6*2,5=15, боковые стороны равны 5x=12,5.
Площадь треугольника с одной стороны равна полупроизведению высоты на основание S=1/2*15*10=75.
С другой стороны площадь треугольника равна произведению длин сторон разделить на четыре радиуса описанной окружности, то есть:
ответ: 7,8125