Пусть данная сфера касается стороны bcтреугольника abc в точке k. тогдаbk = bn = 1, am = an = 1, cm = 2 . am = 2, ck = cm= 2.сечение сферы плоскостью треугольника abcесть окружность, впмсанная в треугольник abc, причем центр o1 этой окружности - ортогональная проекция центра o сферы на плоскость треугольника abc. значит, oo1 - высота пирамиды oabc.пусть r - радиус окружности, вписанной в треугольник abc, p - ролупериметр треугольника, s - площадь. поскольку треугольник abc равнобедренный, отрезкок cn - его высота. тогдаcn =  =  = 2,s = ab . cn = 2, r = s/p = 2/4 = /2.из прямоугольного треугольника oo1nнаходим, чтоoo1 =  =  = 3/.следовательно,v(oabc) = s . oo1 = 2 . 3/ = 2.
Постройте рисунок, будет нагляднее. Пусть трапеция ABCD, BC - меньшее основание, AD - большее, AB - боковая сторона с прямыми углами. Тогда углы ADC и ACB по условию равны и равны 60 градусов. Средняя линия равна полусумме оснований, т.е. (BC+AD)/2. Надо найти её отношение к BC, а значит выразить AD через BC или наоборот. Если угол ACB равен 60 градусов, то и угол CAD тоже (не помню верный термин, но потому что AD и BC параллельны). Раз ADC и CAD равны 60, то и ACD равен 60, а значит треугольник ACD - равносторонний. Сторона CD, таким образом, равна AD (и равна AC, но это, как мы увидим, неважно). Опустим из точки C перпендикуляр к основанию AD, допустим в точку H. Если угол CDH равен 60 градусов, то угол DCH будет 30 градусов. Известно, что против угла в 30 градусов лежит сторона, равная половине гипотенузы. Гипотенуза - CD, и мы узнали что она равна AD. То есть DH = 1/2 CD = 1/2 AD, или, иначе говоря, этот перпендикуляр делит нижнее основание пополам. В то же время AH = BC, то есть BC = 1/2 AD, или AD = 2 BC Мы выразили одно основание через другое, подставляем в искомое соотношение: ((BC + AD)/2 ) / BC = (BC + 2 BC) / 2BC = 3/2 Спрашивайте, если что непонятно
ответ:Я знаю ,что ты здесь)))
Объяснение: