В ромб, сторона которого равна диагонали и равна а, вписана окружность, а в эту окружность вписан правильный треугольник. Найдите: радиус окружности; сторону треугольника; площадь ромба, круга и правильного треугольника.
Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
1)24-6=18 см = а + в, отсюда в=18-а=АВ медиана в равнобедренном треугольнике является и высотой ,значит треугольник АВД-прямоугольный следует ,что АВ=в= 18-а является гипотенузой АВД, АД=а -Ккатет АД исходя из свойств гипотенузы и катета,получаем,что 2 2 2 (18- а) - а = 6 раскроем скобки 2 2 324- 36 а + а - а =36
квадраты а сокращаются остается 324-36 а=36 отсюда убираем минусы так как с обоих сторон остается 36 а= 324-36 36а= 288 а=288 : 36 а= 8 см 18- 8 =10 см= АВ=ВС АС= 8+8=16 так как медиана делит пополам периметр АВС=10+10+16=36 см
Обозначим середину стороны DС буквой K. Координаты точки K ищем по формуле деления отрезка пополам
\begin{lgathered}x_K=\dfrac{x_D+x_C}{2}=\dfrac{8+(-4)}{2}=2\\ y_K=\dfrac{y_D+y_C}{2}=\dfrac{-2+(-2)}{2}=-2\end{lgathered}
x
K
=
2
x
D
+x
C
=
2
8+(−4)
=2
y
K
=
2
y
D
+y
C
=
2
−2+(−2)
=−2
Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
\begin{lgathered}\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}\\ \\ \\ \dfrac{x-(-2)}{2-(-2)}=\dfrac{y-6}{-2-6}~~~\Rightarrow~~~\dfrac{x+2}{4}=\dfrac{y-6}{-8}~~~\Rightarrow~~~ \boxed{y+2x-2=0}\end{lgathered}
x
2
−x
1
x−x
1
=
y
2
−y
1
y−y
1
2−(−2)
x−(−2)
=
−2−6
y−6
⇒
4
x+2
=
−8
y−6
⇒
y+2x−2=0
ответ: y + 2x - 2 = 0.