Как известно, площадь треугольника можно вычислить в данном случае по формуле
S=AB*h/2, где h - высота, проведенная к АВ. (1)
Можно вычислить и по-другому.
S=BC*H/2, где H - высота, проведенная к ВС. H надо найти. (2)
Теперь приравняем правые части формул (1) и (2)
AB*h/2=BC*H/2
Умножим обе части на 2, получим
AB*h=BC*H (3)
По условию задачи АВ=16 см, ВС=22 см, h=11 см. Подставим все это в формулу (3)
16*11=22*Н
Сократим обе части на 11
16=2*Н
Сократим обе части на 2
Н=8.
ответ: Н=8 см- высота, проведенная к стороне ВС
28) Рисунок к этой задаче аналогичен рисунку 66 к задаче 27, только вместо точки О дана точка К на продолжении ребра Д1С1 и вместо АС основа трапеции будет А1Д.
В сечении получается равнобокая трапеция с основанием А1Д = √2.
В верхней грани верхнее основание трапеции равно половине А1Д, то есть √2/2.
Средняя линия трапеции равна L = (√2 + (√2/2))/2 = 3√2/4.
Боковое ребро равно √(1² + (1/2)²) = √(1 + (1/4)) = √5/2.
Проекция бокового ребра на основание трапеции равна
(1/2)*(√2 - (√2/2)) = √2/4.
Находим высоту h трапеции.
h = √((√5/2)² - (√2/4)²) = √((5/4) - (2/16)) = √((20 - 2)/16) = √(18/16) = 3√2/4.
ответ: S = Lh = (3√2/4)*(3√2/4) = 18/16 = 9/8 = 1,125.