1одну 2одну 3 часть прямой с двух сторон ограниченная точками 4часть прямой ограниченная с одной стороны точкой. Либо двумя большими буквами, либо одной маленькой 5два луча исходящие из одной точки. вершина их общее начало, сторона это сами лучи 6обе его стороны лежат на одной прямой 7имеют одинаковую форму и размеры 8 наложить один на другой, чтобы один конец совпал с другим 9 делит его пополам 10 наложить, чтобы одна сторона совмеситлась с другой, а остальные в одну сторону 11 делит угол пополам 12сложить их 13линейка 14сколько градусов он содержит 15сложить их 16меньше 90°, равен 90°, больше 90 но меньше 180° 17хз 18 имеют одну общую сторону,180 19 в точке пересечения образуются прямые углы 20 прямые могут пересечься только в одной точке 21экер,теодолит
1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
Теорема косинусов)) посмотри