1. Правильный четырехугольник - квадрат.
Диаметр вписанной в квадрат окружности равен стороне квадрата. ⇒ r=d:2=4:2=2 см.
Для описанного вокруг данной окружности треугольника АВС она - вписанная.
Радиус вписанной в правильный треугольник окружности равен 1/3 его высоты. Следовательно, высота ∆ АВС =2•3=6 см.
Тогда АВ=ВН:sin60°==4√3 см.
* * *
2. Для нахождения площади сектора существует формула.
S=Lr:2, где L – длина дуги сектора. ⇒
S=6•4:2=12 см²
Если формула забыта, решить задачу можно без нее.
Длина окружности C=2πr
C=2•p•4=8π см
Площадь окружности S=πr²=16 π см²
Вычислим площадь, которая приходится на сектор с дугой в 1 см.
S:C=16π:8π=2
Тогда площадь сектора
S=2•6=12 см²
ед².
Объяснение:Обозначим данную пирамиду буквами .
ед.
Проведём высоту . Точка - центр - точка пересечения, медиан, высот и биссектрис треугольника.
Проведём апофему (апофема - это высота боковой грани пирамиды, проведённая из вершины пирамиды) к стороне основания пирамиды.
Т.к. данная пирамида - правильная, треугольная ⇒ основание пирамиды - правильный треугольник.
.
Проведём высоту в .
Т.к. - равносторонний ⇒ - высота, медиана, биссектриса.
Высота и апофема имеют общее основание, а именно точку , т.к. - медиана, а апофема делит пополам (по свойству).
.
Рассмотрим :
- прямоугольный, так как - высота.
Найдём высоту по теореме Пифагора:
ед.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Точка O - пересечение медиан и делит их в отношении 2 : 1, считая от вершины.
ед.
ед.
Рассмотрим :
- прямоугольный, так как - высота.
Если угол прямоугольного треугольника равен , то напротив лежащий катет равен произведению меньшего катета на .
ед.
Найдём апофему по теореме Пифагора:
ед.
====================================================
полн. поверх. = S основ. + S бок.поверх.
осн. = ед².
бок. поверх. = ( осн. ), где - апофема.
осн. ед.
⇒ бок. поверх. = ед².
⇒ полн. поверх. = ед².
Надеюсь тебе понятен мой почерк