Две точки на сторонах параллелограмма соединили с тремя его вершинами так, как показано на рисунке. Докажите, что сумма площадей оранжевых треугольников равна сумме площадей голубых треугольников.
Объяснение:
Площадь треугольника с синими и белыми частями равна
S( бел часть)+S₁+S₂=1/2*S(паралл.) (*),
а площадь треугольника с синими и желтыми частями равна
S( бел часть)+S₃+S₄=1/2*S(паралл.)(**) .
Тк правые части (*) и(**) одинаковые , то
S( бел часть)+S₁+S₂=S( бел часть)+S₃+S₄ ⇒
S₁+S₂=S₃+S₄ , те сумма площадей оранжевых треугольников равна сумме площадей голубых треугольников.
Если концы одной из сторон параллелограмма соединить с произвольной точкой противоположной стороны , то площадь полученного треугольника равна половине площади параллелограмма.
Доказательство.
S( треуг)=1/2*AD*BH =1/2*(AD*BH)=1/2*S( паралл.)
ответ: 115°.
Объяснение: Проведём хорду АВ и рассмотрим треугольник АВО-равнобедренный, так как АО и ВО радиусы.
Следовательно, ∠ВАО=∠АВО=(180°-65°):2=115°:2=57,5°.
Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания. Значит, ∠А=∠В=90°.
Отрезки касательных к окружности, проведённые из одной точки, равны. Следовательно, АС=ВС. Значит, треугольник АВС-равнобедренный, а значит ∠ВАС=∠АВС.
∠ВАС=90°-57,5°=32,5°.
∠С=180°-(32,5°+32,5°)=180°-65°=115°.